• Title/Summary/Keyword: North pacific

Search Result 687, Processing Time 0.029 seconds

Current Status of Knowledge, Attitude and Practice (KAP) and Screening for Cervical Cancer in Countries at Different Levels of Development

  • Raychaudhuri, Sreejata;Mandal, Sukanta
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4221-4227
    • /
    • 2012
  • Cancer of the uterine cervix is a worldwide menace taking innumerable womens' lives. The literature is vast and a large number of studies have been conducted in this field. Analyses have shown significant differences exist in terms of screening and HPV testing facilities among high income and low to middle income countries. In addition, acute lack of awareness and knowledge among the concerned population is particularly noted in rural areas of the low income countries. A detailed review of Indian case studies revealed that early age of marriage and childbirth, multiparity, poor personal hygiene and low socio-economic status among others are the principal risk factors for this disease. This review concludes that a two pronged strategy involving strong government and NGO action is necessary to minimize the occurrence of cervical cancer especially in low and medium income countries.

A Prediction of Northeast Asian Summer Precipitation Using Teleconnection (원격상관을 이용한 북동아시아 여름철 강수량 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.179-183
    • /
    • 2015
  • Even though state-of-the-art general circulation models is improved step by step, the seasonal predictability of the East Asian summer monsoon still remains poor. In contrast, the seasonal predictability of western North Pacific and Indian monsoon region using dynamic models is relatively high. This study builds canonical correlation analysis model for seasonal prediction using wind fields over western North Pacific and Indian Ocean from the Global Seasonal Forecasting System version 5 (GloSea5), and then assesses the predictability of so-called hybrid model. In addition, we suggest improvement method for forecast skill by introducing the lagged ensemble technique.

Review of Oceanography of the Subarctic North Pacific Ocean (북태평양어장의 해양환경)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.9-27
    • /
    • 1971
  • Oceanography of the Subarctic North Pacific Ocean is reviewed. The submarine topography and the current systems in the region are explained. Recent serial observation data reveals that. though the upper mixed layer of low salinity is relatively thick. the pattern of the property distribution in winter is essencially similar to that in summer. Alaskan Stream Extension Water. which influences the abundance and the location of demersal fishes. extends northward to 58${\circ}$ N Lat in the Bering Sea. A southeastward intrusion of the Bering Borcal Cold Water causes the formation of a sharp oceanic front. where the demersal fishes such as Alaska pollacks and cods arc concentrated. The Alaska pollacks seem to avoid the low salinity water of the Alaskan Coastal Water.

  • PDF

Review of Oceanography of the Subarctic North Pacific Ocean (북태평양어장의 해양환경)

  • 장선덕
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.7 no.1
    • /
    • pp.8-8
    • /
    • 1971
  • Oceanography of the Subarctic North Pacific Ocean is reviewed. The submarine topography and the current systems in the region are explained. Recent serial observation data reveals that. though the upper mixed layer of low salinity is relatively thick. the pattern of the property distribution in winter is essencially similar to that in summer. Alaskan Stream Extension Water. which influences the abundance and the location of demersal fishes. extends northward to 58${\circ}$ N Lat in the Bering Sea. A southeastward intrusion of the Bering Borcal Cold Water causes the formation of a sharp oceanic front. where the demersal fishes such as Alaska pollacks and cods arc concentrated. The Alaska pollacks seem to avoid the low salinity water of the Alaskan Coastal Water.

Seasonal Prediction of Tropical Cyclone Frequency in the Western North Pacific using GDAPS Ensemble Prediction System (GDAPS 앙상블 예보 시스템을 이용한 북서태평양에서의 태풍 발생 계절 예측)

  • Kim, Ji-Sun;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.269-279
    • /
    • 2007
  • This study investigates the possibility of seasonal prediction for tropical cyclone activity in the western North Pacific by using a dynamical modeling approach. We use data from the SMIP/HFP (Seasonal Prediction Model Inter-comparison Project/Historical Forecast Project) experiment with the Korea Meteorological Administration's GDAPS (Global Data Assimilation and Prediction System) T106 model, focusing our analysis on model-generated tropical cyclones. It is found that the prediction depends primarily on the tropical cyclone (TC) detecting criteria. Additionally, a scaling factor and a different weighting to each ensemble member are found to be essential for the best predictions of summertime TC activity. This approach indeed shows a certain skill not only in the category forecast but in the standard verifications such as Brier score and relative operating characteristics (ROC).

Seasonal Mean Wind Direction and Wind Speed in a Greater Coasting Area (우리나라 근해구역의 계절별 평균 풍향$\cdot$풍속 고찰)

  • Seol Dong Il
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.163-166
    • /
    • 2003
  • The seasonal mean wind direction and wind speed in a greater coasting area are investigated using the ECMWF(European Centre for Medium-Range Weather Forecasts) data for 11 years from 1985 to 1995. In winter, the main wind direction in Korea and vicinity, Taiwan and vicinity, and the North Pacific Ocean of middle latitudes is a northwesterly wind, northeasterly wind, and westerly wind respectively. The wind speed is strongest in the East China Sea, the South China Sea, and the North Pacific Ocean of low latitudes(Beaufort wind scale 5-6). A distribution pattern of wind direction in spring and fall is similar to that in winter. Seasonal mean wind speed is strongest in winter and the next is fall. The wind speed in summer is generally weak. However, that in the Indochina and vicinity is strong by the influence of Asian monsoon.

  • PDF

Prediction of the number of Tropical Cyclones over Western North Pacific in TC season (여름철 북서태평양 태풍발생 예측을 위한 통계적 모형 개발)

  • Sohn, Keon-Tae;Hong, Chang-Kon;Kwon, H.-Joe;Park, Jung-Kyu
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.9-15
    • /
    • 2002
  • This paper presents the seasonal forecasting of the occurrence of tropical cyclone (TC) over Western North Pacific (WNP) using the generalized linear model (GLM) and dynamic linear model (DLM) based on 51-year-data (1951-2001) in TC season (June to November). The numbers of TC and TY are predictands and 16 indices (the E1 Nino/Southern Oscillation, the synoptic factors over East asia and WNP) are considered as potential predictors. With 30-year moving windowing, the estimation and prediction of TC and TY are performed using GLM. If GLM forecasts have some systematic error like a bias, DLM is applied to remove the systematic error in order to improve the accuracy of prediction.

  • PDF

Marine Meteorological Characteristics in 2006-2007 : Sea Surface Wind (2006-2007년 해양기상 특성 : 해상풍)

  • You, Sung Hyup;Kwon, Ji Hye;Kim, Jeong-Sik
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study compared the sea surface wind pattern between model results from KMA operational model (RDAPS) and retrieved results from QuickSCAT in the 2006-2007 year. The mean spatial distributions of sea surface wind of RDAPS and QuikSCAT show the prominent seasonal patterns of summer and winter season adjacent to Korean Peninsular. The magnitude of sea surface wind predicted by RDAPS is weaker than that of QuikSCAT in most north Pacific ocean. In summer of 2006 positive bias with the maximum of 1 m/s is appeared in broad region of north Pacific ocean, however. the positive bias region is decreased to small region in 2007. Even though the predicted sea wind by RDAPS is stronger(weaker) than observed one by QuikSCAT in summer (winter), the RDAPS model simulate well the sea surface wind adjacent to Korean peninsular.

On the Subtropical Countercurrent in the Western North Pacific

  • Chang, Sun-duck
    • 한국해양학회지
    • /
    • v.8 no.1
    • /
    • pp.4-8
    • /
    • 1973
  • Recent dynamic computations of zonal flow and analysis of oceanographic data of CSK in winter indicate year-to year variations in the location and dynmic structure of the Subtropic Countercurrent in the western North Pacific. In January 1966, the Subtropical Countercurrent migrated southward to 21$^{\circ}$- 22$^{\circ}$N Lat in association with the subsurface Subtropical Convergence. At the area of 25$^{\circ}$- 26$^{\circ}$N Lat, another surface thermal front was formed along which a stronger eastward flow of approximately 0.4kt is seen. On the section of 142$^{\circ}$E Long in January 1967, eastward flow appears at every interval of 2$^{\circ}$latitude in the northern waters of 20$^{\circ}$N Lat.

  • PDF

Distribution of Tropical Tropospheric Ozone Determined by the Scan-Angle Method applied to TOMS Measurements

  • Kim, Jae-H.;Na, Sun-Mi;Newchurch, M. J.;Emmons, L.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.7-11
    • /
    • 2002
  • This study introduces the first method that determines tropospheric ozone column directly from a space-based instrument. This method is based on the physical differences in the Total Ozone Mapping Spectrometer (TOMS) measurement as a function of its scan-angle geometry. Tropospheric ozone in September-October exhibits a broad enhancement over South America, the southern Atlantic Ocean, and western South Africa and a minimum over the central Pacific Ocean. Tropical tropospheric ozone south of the equator is higher than north of the equator in September-October, the southern burning season. Conversely, ozone north of the equator is higher in March, the northern burning season. Overall, the ozone over the southern tropics during September-October is significantly higher than over the northern tropics. Abnormally high tropospheric ozone occurs over the western Pacific Ocean during the El Nino season when the ozone amounts are as high as the ozone over the Africa.

  • PDF