• Title/Summary/Keyword: Normally consolidated clay

Search Result 72, Processing Time 0.022 seconds

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

A Prediction of the Behavior in Normally Consolidated Clay with Application of Isotropic Single Hardening Constitutive Model (등방단일경화구성모델에 의한 정규압밀점토의 거동 예측)

  • 홍원표;남정만
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.9-18
    • /
    • 1996
  • The results of a series of triaxial compression tests on remolded normally consolidated clay are compared with the predictions .by the isotropic single -hardening constitutive model, which incorporates eleven parameters. The parameters can be determined from undrained triaxial compression tests on isotropically consolidated specimens of remolded clay. The model with the determined parameters is applied to predict the stress-strain and pore pressure behaviors for untrained triaxial compresion tests on anisotropically consolidated specimens. Also the model is utilized to predict the stress strain and voltmetric strain behavior for drained triaxial compression tests on both isotropic and anisotropic specimens. The predicted response agrees well with the measured behavior for undrained triaxial compression tests on not only isotropically but also anisotroically but also anisotropically consolidated specimens. The initial volumetric strain is, however, predicted to be less than the measured value from drained triaxial compression tests, while the predicted volumetric strain close to failure is greater than the measured value. Nevertheless, it may be stated generally that overall acceptable predictions are produced. Therefore, the results of this study indicate that the applicability of the model on prediction of the behavior of normally consolidated clay is achieved sufficiently.

  • PDF

Undrained Behavior of $K_0$ Consolidated Clay due to Strain Rate ($K_0$ 압밀 점토의 변형율 의존 비배수 전단거동)

  • Kim, Jin-Won;Lee, Chang-Ho;Lee, Moon-Ju;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1039-1046
    • /
    • 2005
  • After clay particles have been sediment isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the laboratory test should be enforced under $K_0$-stress system and should obtain the characteristics of normally consolidated clays. And relationship of stress-strain on clay is effected on not only method of consolidation but also characteristic of visco-plastic behavior. Saturated clay is effected more this trend. So, rate of strain is considered to understand exact stress-strain relationship. In this study, the series of undrained triaxial compression tests were preformed on remolded specimens which was made by slurry of clay, consolidated under $K_0$-stress systems. And the undrained triaxial compression test were preformed to examine behavior of stress-strain relationship due to rate of shear strain relationship due to rate of shear strain.

  • PDF

The Influence of Deformation Modes on the Coefficient of Consolidation in the Normally Consolidated Clay (변형형상에 따른 정규압밀 점성토의 압밀계수 변화)

  • Park, Jae-Hyeon;Jeong, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.823-830
    • /
    • 2004
  • Consolidation tests under various deformation modes were performed to investigate the effect of deformation modes on the coefficient of consolidation in the normally consolidated clay in remolded and undisturbed clay. The degree of soil anisotropy was evaluated using cross-anisotropic elasticity theory suggested by Graham et al.(1983). Experimental results showed that the vertical compressibility was larger than the horizontal compressibility by $12{\sim}21%$ for the remolded clay and by $23{\sim}60%$ for the undisturbed clay, respectively. The results of a series of consolidation tests under the specific deformation modes showed that the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 3 dimensional strain condition due to different deformation mode. Furthermore, the coefficient of consolidation under 1 dimensional vertical strain condition was larger than that under 1 dimensional horizontal strain condition by $40{\sim}60%$ in undisturbed clay, which clearly emphasized the significant effect of soil anisotropy on the rate of consolidation. Consequently, it can be concluded that the anisotropic deformation modes of soils, especially naturally deposited clays, should be taken into account for more accurate evaluation of the coefficient of consolidation.

  • PDF

Behavior of the Embankment on Normally Consolidated Clay Supported by the Piled Raft (Piled Raft 기초로 지지된 연약지반 상의 제방의 거동)

  • Kim, Sang-Kyu;Song, Sun-Ok;Han, Sung-Gil;Jeon, Jin-Kyu;Lee, Wan-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.4
    • /
    • pp.33-41
    • /
    • 2011
  • A railway embankment route extending to 2 km was laid on normally consolidated clay in the West Gimhae Plain. This embankment was first built using the stage-construction technique, but longitudinal cracks suggesting arc sliding appeared on the surface of the embankment immediately after the first stage of its construction. As an alternative, the piled raft was installed on the failed embankment and then the remaining height of the embankment was raised. The behavior of the piled raft was monitored with different instruments during construction. This paper describes the monitoring results and analyses. The results show that if the pile group essentially exhibits the behavior of friction piles, the piled raft foundation performs well even in normally consolidated soft clay.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Effect of K0-Consolidation in Behavior of Normally Consolidated Clay (정규압밀점토(正規壓密粘土)의 거동(擧動)에 미치는 K0-압밀효과(壓密効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.183-193
    • /
    • 1987
  • After clay particles have been sedimented isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the effect of $K_0$-consolidation should be considered. A series of undrained and drained triaxial compression tests was performed on remolded specimens of clay consolidated under both $K_0$-and isotropic stress systems and the effect of $K_0$-consolidation was investigated. $K_0$-consolidation has much effect on the deviator stress, especially at initial deformation stage of consolidated-undrained tests, but has little effect on the principal effective stress ratio. Thus, the undrained strength behavior of $K_0$-consolidated samples can not be predicted from isotropically consolidated test data. However, the failure envelop, provided by the maximum principal effective stress ratio failure criterion, is unique and curved.

  • PDF

Effect of Consolidation Methods on Shear Strength of Normally Consolidated Clay (정규압밀잡토의 비배수전단강도에 미치는 압밀방법의 영향)

  • 홍원표
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1987
  • Although natural soil deposits hat.e been consolidated under Ko-stress system, the soil behavior has been predicted in laboratory from the results of tests performed on specimens consolidated under an isotropic stress s).stem. A series of undrained triaxial compression tests are performed on remolded specimens of clay consolidated under both types of stress systems, and the results at.e compared. One dimensional consolidation history induces anisotropy in clalrs, which is called as the stress induced anisotropy. However, if the clays would be reconsolidated under isotropic stress system. the anisotropy of undrained stress비h would be decreased with decrease of overconsolidation ratio. Undrained shear strength of norma]Iy consolidated clay depends on consolidation methods. Both the Rutledge hypothesis and the study of Henkel and Sowa do not agree with the test results obtained in this paper. In addition, a new theory is explained about the relationships between consolidation stresses, water contents and undiained shear strength.

  • PDF

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

Study on the Time Dependent Stress-Strain Behavior of Clay (점성토의 시간의존적 응력 - 변형 특성에 관한 연구)

  • 지인택;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF