• Title/Summary/Keyword: Normalized input data

Search Result 112, Processing Time 0.019 seconds

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

IMPLEMENTATION OF SUBSEQUENCE MAPPING METHOD FOR SEQUENTIAL PATTERN MINING

  • Trang, Nguyen Thu;Lee, Bum-Ju;Lee, Heon-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.627-630
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

  • PDF

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Improved prediction of soil liquefaction susceptibility using ensemble learning algorithms

  • Satyam Tiwari;Sarat K. Das;Madhumita Mohanty;Prakhar
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.475-498
    • /
    • 2024
  • The prediction of the susceptibility of soil to liquefaction using a limited set of parameters, particularly when dealing with highly unbalanced databases is a challenging problem. The current study focuses on different ensemble learning classification algorithms using highly unbalanced databases of results from in-situ tests; standard penetration test (SPT), shear wave velocity (Vs) test, and cone penetration test (CPT). The input parameters for these datasets consist of earthquake intensity parameters, strong ground motion parameters, and in-situ soil testing parameters. liquefaction index serving as the binary output parameter. After a rigorous comparison with existing literature, extreme gradient boosting (XGBoost), bagging, and random forest (RF) emerge as the most efficient models for liquefaction instance classification across different datasets. Notably, for SPT and Vs-based models, XGBoost exhibits superior performance, followed by Light gradient boosting machine (LightGBM) and Bagging, while for CPT-based models, Bagging ranks highest, followed by Gradient boosting and random forest, with CPT-based models demonstrating lower Gmean(error), rendering them preferable for soil liquefaction susceptibility prediction. Key parameters influencing model performance include internal friction angle of soil (ϕ) and percentage of fines less than 75 µ (F75) for SPT and Vs data and normalized average cone tip resistance (qc) and peak horizontal ground acceleration (amax) for CPT data. It was also observed that the addition of Vs measurement to SPT data increased the efficiency of the prediction in comparison to only SPT data. Furthermore, to enhance usability, a graphical user interface (GUI) for seamless classification operations based on provided input parameters was proposed.

Feature Selection of Training set for Supervised Classification of Satellite Imagery (위성영상의 감독분류를 위한 훈련집합의 특징 선택에 관한 연구)

  • 곽장호;이황재;이준환
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 1999
  • It is complicate and time-consuming process to classify a multi-band satellite imagery according to the application. In addition, classification rate sensitively depends on the selection of training data set and features in a supervised classification process. This paper introduced a classification network adopting a fuzzy-based $\gamma$-model in order to select a training data set and to extract feature which highly contribute to an actual classification. The features used in the classification were gray-level histogram, textures, and NDVI(Normalized Difference Vegetation Index) of target imagery. Moreover, in order to minimize the errors in the classification network, the Gradient Descent method was used in the training process for the $\gamma$-parameters at each code used. The trained parameters made it possible to know the connectivity of each node and to delete the void features from all the possible input features.

Accuracy Evaluation of Supervised Classification by Using Morphological Attribute Profiles and Additional Band of Hyperspectral Imagery (초분광 영상의 Morphological Attribute Profiles와 추가 밴드를 이용한 감독분류의 정확도 평가)

  • Park, Hong Lyun;Choi, Jae Wan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Hyperspectral imagery is used in the land cover classification with the principle component analysis and minimum noise fraction to reduce the data dimensionality and noise. Recently, studies on the supervised classification using various features having spectral information and spatial characteristic have been carried out. In this study, principle component bands and normalized difference vegetation index(NDVI) was utilized in the supervised classification for the land cover classification. To utilize additional information not included in the principle component bands by the hyperspectral imagery, we tried to increase the classification accuracy by using the NDVI. In addition, the extended attribute profiles(EAP) generated using the morphological filter was used as the input data. The random forest algorithm, which is one of the representative supervised classification, was used. The classification accuracy according to the application of various features based on EAP was compared. Two areas was selected in the experiments, and the quantitative evaluation was performed by using reference data. The classification accuracy of the proposed algorithm showed the highest classification accuracy of 85.72% and 91.14% compared with existing algorithms. Further research will need to develop a supervised classification algorithm and additional input datasets to improve the accuracy of land cover classification using hyperspectral imagery.

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

EEG Signal Prediction by using State Feedback Real-Time Recurrent Neural Network (상태피드백 실시간 회귀 신경회망을 이용한 EEG 신호 예측)

  • Kim, Taek-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.39-42
    • /
    • 2002
  • For the purpose of modeling EEG signal which has nonstationary and nonlinear dynamic characteristics, this paper propose a state feedback real time recurrent neural network model. The state feedback real time recurrent neural network is structured to have memory structure in the state of hidden layers so that it has arbitrary dynamics and ability to deal with time-varying input through its own temporal operation. For the model test, Mackey-Glass time series is used as a nonlinear dynamic system and the model is applied to the prediction of three types of EEG, alpha wave, beta wave and epileptic EEG. Experimental results show that the performance of the proposed model is better than that of other neural network models which are compared in this paper in some view points of the converging speed in learning stage and normalized mean square error for the test data set.