• Title/Summary/Keyword: Normal-strength concrete

Search Result 839, Processing Time 0.024 seconds

An Experimental Study on the Strength Characteristics of Pine Needle Ash Concrete (솔잎재 콘크리트의 강도 특성에 관한 실험적 연구)

  • 남기성;성찬용;김경태;김영익;서대석
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.171-175
    • /
    • 1998
  • This study was to estimate the strength of pine needle ash concrete using cement, natural aggregates and pine needle ash(PNA). The highest strength was achieved by 5% pine needle ash filled PNA concrete respectively. It was increased 6% by compressive strength, 15% by tensile strength and 13% by bending strength than that of the normal cement concrete, respectively.

  • PDF

An Experimental Study on the Mechanical Behavior of High-Strength Concretes Subjected to High Temperature (고온을 받은 고강도 콘크리트의 역학적 특성에 관한 실험적 연구)

  • Yang, Keun-Hyeok;Hong, Seong-Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.25-28
    • /
    • 2005
  • The experimental results on the mechanical behavior of high-strength concretes subjected to high temperature were presented. Main variables were heating temperature, heating continuance time, and cooling condition. The compressive strength properties of high strength concrete(HSC) varied differently with temperature than those of normal strength concrete(NSC). HSC had higher rates of strength loss than NSC in the temperature range of between $20^{circ}C$ and $400^{circ}C$. Especially, HSC exploded in $400^{circ}C$ of high temperature.

  • PDF

Evaluation on Residual Compressive Strength and Strain Properties of Ultra High Strength Concrete with Design Load and Elevated Temperature (설계하중 및 고온을 받은 초고강도 콘크리트의 잔존압축강도 및 변형 특성 평가)

  • Yoon, Min-Ho;Kim, Gyu-Yong;Nam, Jeong-Soo;Yun, Jong-Il;Bae, Chang-O;Choe, Gyeong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.263-264
    • /
    • 2012
  • In this study, the ultra high strength concrete which have 100, 150, 200MPa took the heat from 20℃ to 70 0℃ and the 0, 20% stress in normal condition's to evaluate stress-strain, residual compressive strength and thermal expansion deformation were evaluated. The heating speed of specimen was 0.77℃/min 20~50℃, 50℃ before the target temperature, and the other interval's heating speed was 1℃/min. As a result, the stress-strain curve of non-load specimen showed the liner behavior at high temperature when the specimen's strength increased more. If ultra high strength concrete got loads, its compressive strength tended to decrease different from the normal strength concrete. The thermal expansion deformation was expanded from a vitrification of quartz over 500℃. however, over the 600℃, it was shrinked because of the dehydration of the combined water.

  • PDF

Mechanical Properties and Mix Proportion of High-Strength Concrete over 60MPa for PSC Bridges (PSC 교량용 설계강도 60 MPa 이상 고강도 콘크리트의 실용화를 위한 배합 및 역학적 특성에 관한 연구)

  • Lee, Joo-Ha;Jung, Hyun-Suck;Cheong, Hai-Moon;Ahn, Tae-Song;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.9-12
    • /
    • 2006
  • Many researches have been carried out on development of high-strength concrete, but most researches have been focused on building structures such as a high-rise building. However today, the demand of high-strength concrete for civil structures like a PSC bridge is increasing steadily. In addition, the current design code based on experimental results of normal strength concrete needs to be modified for high-strength concrete structures. Therefore, it is necessary to perform a research on mechanical properties and mix proportion of high-strength concrete suitable for PSC bridges. The primary purpose of this study was to develop the high-strength concrete mixtures which can be applied to PSC bridges and to evaluate mechanical properties of high-strength concrete.

  • PDF

Uni-axial behaviour of normal-strength CFDST columns with external steel rings

  • Dong, C.X.;Ho, J.C.M.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.587-606
    • /
    • 2012
  • Concrete-filled-steel-tubular (CFST) columns have been well proven to improve effectively the strength, stiffness and ductility of concrete members. However, the central part of concrete in CFST columns is not fully utilised under uni-axial compression, bending and torsion. It has small contribution to both flexural and torsion strength, while it can be replaced effectively by steel with smaller area to give similar load-carrying capacity. Also, the confining pressure in CFST columns builds up slowly because the initial elastic dilation of concrete is small before micro-crackings of concrete are developed. From these observations, it is convinced that the central concrete can be effectively replaced by another hollow steel tube with smaller area to form double-skinned concrete-filled-steel-tubular (CFDST) columns. In this study, a series of uni-axial compression tests were carried out on CFDST and CFST columns with and without external steel rings. From the test results, it was observed that on average that the stiffness and elastic strength of CFDST columns are about 25.8% and 33.4% respectively larger than CFST columns with similar equivalent area. The averaged axial load-carrying capacity of CFDST columns is 7.8% higher than CFST columns. Lastly, a theoretical model that takes into account the confining effects of steel tube and external rings for predicting the uni-axial load-carrying capacity of CFDST columns is developed.

Rehabilitation of normal and self-compacted steel fiber reinforced concrete corbels via basalt fiber

  • Gulsan, Mehmet Eren;Al Jawahery, Mohammed S.;Alshawaf, Adnan H.;Hussein, Twana A.;Abdulhaleem, Khamees N.;Cevik, Abdulkadir
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.423-463
    • /
    • 2018
  • This paper investigates the behavior of normal and self-compacted steel fiber reinforced concrete (SCC-SFRC) corbels rehabilitated by Basalt Fiber Mesh (BFM) and Basalt Fiber Fabric (BFF) for the first time in literature. The research objective is to study the effectiveness of BFM and BFF in the rehabilitation of damaged reinforced concrete corbels with and without epoxy injection. The experimental program includes two types of concrete: normal concrete, and self-compacted concrete. For normal concrete, 12 corbels were rehabilitated by BFM without injection epoxy in cracks, with two values of compressive strength, three ratios of steel fiber (SF), and two values of shear span. For self-compacted concrete, 48 corbels were rehabilitated with different parameters where 12 corbels were rehabilitated by BFM with and without epoxy injection, 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks only by epoxy injection, and 18 heated corbels with three different high-temperature level were rehabilitated by repairing cracks by epoxy and wrapping by BFF. All 48 corbels have two values of compressive strength, three values volumetric ratios of SF, and two values of the shear span. Test results indicate that RC corbels rehabilitated by BFM only without injection did not show any increase in the ultimate load capacity. Moreover, For RC corbels that were repaired by epoxy without basalt wrapping, the ultimate load capacities showed an increase depending on the mode of failure of corbels before the rehabilitation. However, the rehabilitation with only crack repairing by epoxy injection is more effective on medium strength corbels as compared to high strength ones. Finally, it can be concluded that use of BFF is an effective and powerful technique for the strengthening of damaged RC corbels.

Behaviors of novel sandwich composite beams with normal weight concrete

  • Yan, Jia-Bao;Dong, Xin;Wang, Tao
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.599-615
    • /
    • 2021
  • The ultimate strength behaviour of sandwich composite beams with J-hooks and normal weight concrete (SCSSBJNs) are studied through two-point loading tests on ten full-scale SCSSBJNs. The test results show that the SCSSBJN with different parameters under two-point loads exhibits three types of failure modes, i.e., flexure, shear, and combined shear and flexure mode. SCSSBJN failed in different failure modes exhibits different load-deflection behaviours, and the main difference of these three types of behaviours exist in their last working stages. The influences of thickness of steel faceplate, shear span ratio, concrete core strength, and spacing of J-hooks on structural behaviours of SCSSBJN are discussed and analysed. These test results show that the failure mode of SCSSBJN was sensitive to the thickness of steel faceplate, shear span ratio, and concrete core strength. Theoretical models are developed to estimate the cracking, yielding, and ultimate bending resistance of SCSSBJN as well as its transverse cross-sectional shear resistance. The validations of predictions by these theoretical models proved that they are capable of estimating strengths of novel SCSSBJNs.

Bond Strength of Latex-Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이남주;장흥균;심도식;김경진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.647-652
    • /
    • 2000
  • The bond strength of latex-modified concrete to normal portland cement concrete measured with direct pull-out test. Using $250\times1100\times1400$mm concrete slab as the base concrete, an overlay of the latex-modified concrete is applied and cured similar to bridge deck and then tested in direct pull-out. The test results not only give values of the bond strength of the overlay tested but also clearly indicate whether the failure is in the bond interface or the materials tested.

  • PDF

Strength Characteristics of Concrete Containing Blast-Funrnace Slag as Coarse Aggregate (고로슬래그를 굵은골재로 이용한 콘크리트의 강도특성)

  • 한상호
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.5
    • /
    • pp.59-68
    • /
    • 2000
  • A series of experiments were performed to investigate the strength characteristics of concrete which contain air cooled blast-furnace slag as coarse aggregate. The slag is a by product of GISC. The experimental conditions are varied with three different W/C(45%, 50%, 55%) and the weight of water and S/a are constant. The strength properties of the concrete at 7days, 28days, 90days are examined. Also the same strength properties are examined for the normal concrete which contain river gravel and crushed stone respectively as coarse aggregate. As the comparison results of the strength properties, it was found that the compressive strength development of concrete containing blast-furnace slag is better than that of concrete using river gravel at early age, however this is adversely at long-term age, and the tensile and flexural strength of the concrete were not nearly affected by water-cement ratio.

A review on performance of composite structures combining UHPC and normal concrete

  • Thanh Vy Nguyen;TuanAnh Nguyen;An Hoang Le
    • Structural Engineering and Mechanics
    • /
    • v.91 no.2
    • /
    • pp.149-161
    • /
    • 2024
  • In the world, the construction science and technology industry has developed strongly thanks to the application of Ultra-High Performance Concrete (UHPC) technology, with a strength greater than 150 Mpa and unprecedented durability. compared to previous materials. However, this technology can build special structures but has limited use in construction because it is not commercially feasible to replace regular concrete in most structural types due to material costs. high, lack of availability, limited design standards, complex manufacturing and maintenance techniques. This article examines the composition of UHPC materials and their performance in composite structures with conventional concrete, a promising choice for promoting the development of UHPC technology in construction. It is based on the combined use of UHPC as a covering layer around normal concrete or as an inner core to increase the strength of normal concrete, create a slender structure and reduce the cost and repair of construction works. Construction and transport infrastructure are degraded. Manufacturing costs are expected to be reduced with composite construction due to the advantages of combined materials.