• Title/Summary/Keyword: Normal process

Search Result 2,900, Processing Time 0.038 seconds

Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process (주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

Influence of Punch Nose Radius on the Surface Expansion (펀치 노우즈의 곡률반경이 표면확장에 미치는 영향)

  • Min, K.H.;Jayasekara, V.R.;Hwang, B.B.;Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.582-589
    • /
    • 2007
  • This paper is related to an analysis on the surface expansion in backward can extrusion process using spherical punches. It is generally known that the backward can extrusion process usually experiences severe normal pressure and heavy surface expansion. This is a reason why the backward can extrusion process is one of most difficult operations among many forging processes. Different punch nose radii have been applied to the simulation to investigate the effect of punch nose radius on the surface expansion, which is a major effort in this study. AA 2024 aluminum alloy is selected as a model material for investigation. Different frictional conditions have also been selected as a process parameter. The pressure applied on the punch has been also investigated since heavy surface expansion as well as high normal pressure on the tool usually leads to severe tribological conditions along the interface between material and tool. The simulation results are summarized in terms of surface expansion at different reduction in height, deformation patterns including strain distributions and maximum pressure exerted on the workpiece and punch, the effect of punch nose radius and the frictional condition on the surface expansion and the location and magnitude of maximum pressure exerted, respectively.

Improved Georeferencing of a Wearable Indoor Mapping System Using NDT and Sensor Integration

  • Do, Linh Giang;Kim, Changjae;Kim, Han Sae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.425-433
    • /
    • 2020
  • Three-dimensional data has been used for different applications such as robotics, building reconstruction, and so on. 3D data can be generated from an optical camera or a laser scanner. Especially, a wearable multi-sensor system including the above-mentioned sensors is an optimized structure that can overcome the drawbacks of each sensor. After finding the geometric relationships between sensors, georeferencing of the datasets acquired from the moving system, should be carried out. Especially, in an indoor environment, error propagation always causes problem in the georeferencing process. To improve the accuracy of this process, other sources of data were used to combine with LiDAR (Light Detection and Ranging) data, and various registration methods were also tested to find the most suitable way. More specifically, this paper proposed a new process of NDT (Normal Distribution Transform) to register the LiDAR point cloud, with additional information from other sensors. For real experiment, a wearable mapping system was used to acquire datasets in an indoor environment. The results showed that applying the new process of NDT and combining LiDAR data with IMU (Inertial Measurement Unit) information achieved the best result with the RMSE 0.063 m.

A Multivariate Process Capability Index using Expected Loss (기대손실을 이용한 다변량 공정능력지수)

  • Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.116-123
    • /
    • 2005
  • The traditional process capability indices Cp, Cpk, Cpm, $Cpm^+$ have been used to characterize process performance on the basis of univariate quality characteristics. Cp, Cpk consider the process variation, Cpm considers both the process variation and the process deviation from target and Cpm+ considers economic loss for the process deviation from target. In manufacturing industry, there is growing interest in quantitative measures of process variation under multivariate duality characteristics. The multivariate process capability index incorporates both the process variation and the process deviation from target or considers expected loss caused by the process deviation from target. This paper proposes multivariate capability index based on the expected loss derived from multivariate normal distribution.

A Note on the Dependence Conditions for Stationary Normal Sequences

  • Choi, Hyemi
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.647-653
    • /
    • 2015
  • Extreme value theory concerns the distributional properties of the maximum of a random sample; subsequently, it has been significantly extended to stationary random sequences satisfying weak dependence restrictions. We focus on distributional mixing condition $D(u_n)$ and the Berman condition based on covariance among weak dependence restrictions. The former is assumed for general stationary sequences and the latter for stationary normal processes; however, both imply the same distributional limit of the maximum of the normal process. In this paper $D(u_n)$ condition is shown weaker than Berman's covariance condition. Examples are given where the Berman condition is satisfied but the distributional mixing is not.

A Study on Photoelastic Fringe Patterns in Cutting Process(II) (切削加工 의 光彈性的 現象 에 관한 硏究 (II))

  • 김정두;이용성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.401-407
    • /
    • 1984
  • In the previous paper, part I, the principal stresses were investigated on the normal tools and the workpieces whose materials were the same epoxy resin. In this paper, are measured and compared the stresses on the normal tools and restricted tools which have three various rake angles. Each restricted tool above has the same restricted angle. The workpieces used in this experiment are made of high quality lead. The photoelastic measuring device is attached to the saddle of the lathe and carried at the same speed as the cutting tool is feeded. The results obtained are summarized as follows; The shear stresses on the tip of the restricted tools of the rake angle .alpha.=12.deg. and .alpha.=0.deg. are less than those of normal tools. But, for the rake angle .alpha.=-12.deg., the former is greater than the latter. The result of photoelastic method shows that in the range of rapid decreasing of normal stress on the tool edge, the shear is maintaining a certain value.

A Study on the Normal Combustion and Abnormal Combustion in Automotive S.I.Engine (Knocking Phenomena in Quiscent or Swirl Flow Field) (자동차용 가솔린 기관의 정상연소 및 이상연소에 관한 연구)

  • Lee, K.W.;Fujimoto, H.;Park, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.250-261
    • /
    • 1995
  • In this study, a rapid compression and expansion machine(RCEM) equipped with a swirl generator was designed and developed, in order to clarify normal and abnormal combustion(knocking phenomena). This RCEM is intended to simulate combustion process in actual automotive S.I.engines, having a high reproducibility in the compression stroke. Flame propagation and autoignition processes associated with normal and abnormal combustion were captured by the high speed schlieren photography. And swirl intensity. equivalence ratio and ignition position were varied to investigate the effect of turbulence, concentration in the unburnt gas region and flame propagation length. The knock intensity, knock mass fraction and knock mass fraction after autoignition were calculated by use of history of measured cylinder pressure.

  • PDF

In Pursuit of Genetic Factors for Recurrent Pregnancy Loss

  • Baek, Kwang-Hyun
    • 대한생식의학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.15-21
    • /
    • 2002
  • In order to keep the normal pregnancy, a number of gene products are required at the feto-matemal interface. We have isolated approximately 30 genes, involved in keeping the normal pregnancy, via subtractive hybridization and RT-PCR analyses of cDNAs from the chorionic villi of normal and RPL patients. Characterizing their functions will help us to understand the process of establishing and maintaining pregnancy. In addition, more detailed studies of their expression in normal and RPL patients are required to evaluate their clinical relevance. Further identification of genes aberrantly expressed in RPL patients will help the prognosis of the pregnancy, identifying pregnancies with a high risk of miscarriage and enabling management of those pregnancies.

  • PDF

No-backlash characteristics analysis of a cycloidal ball planetary transmission under axial pre-tightening

  • Yang, Ronggang;Wang, Naige;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • v.81 no.4
    • /
    • pp.481-492
    • /
    • 2022
  • Cycloidal ball planetary transmission (CBPT) has many applications as precision reducer, such as precision machinery and automation drive systems etc. The traditional analytical model of CBPT cannot accurately describe the change of the normal force of meshing points, and thus cannot describe the precise transmission process of meshing pairs. In the paper, a method for deriving the normal force equation is put forward by using the non-linear relationship between force and deformation in elastic mechanics. The two-point contact analytical models of all the meshing pairs are established to obtain the micro-displacement analytical model of CBPT under axial pre-tightening. Then, the non-real-time two-point contact analytical models of all the meshing pairs are further constructed to obtain the normal force expression to determine the critical compression coefficients. Experimental investigations are performed to verify the analytical model using the critical compression coefficients.

Normal Mode Studies for Solids HF, HCl and Polyethylene According to the Pseudolattice Method

  • Chang, Man-Chai;John, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 1985
  • Normal modes of solids HF, HCl and polyethylene having the exciting spectrometric phenomena have been evaluated by taking the lowest temperature phase of these species in the solid. The solids HF and HCl have the same space group as C$_{2}{\nu}$, and polyethylene has a space group with D$_{2h}$. The normal modes were obtained by the valence force field with modified force constants and a quantitative description of the normal mode is adjusted by the potential energy distribution (PED). From the PED, the most fittable force constants are also obtained. We have intended to calculate the normal modes by using the smallest size of the model and the simple computational process. To remove the edge effects being occurred in constructing the single cluster model, different from the boundary condition being generally used up to now, the idea of pseudolattice method being successfully applied to MO calculations of solid was extended to normal mode analysis in order to give the same environment for all moecules in a chosen cluster. By using the above valence force field and boundary condition, we obtain the assigned frequencies and compare those results with the results obtained by others.