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Abstract
Extreme value theory concerns the distributional properties of the maximum of a random sample; subse-

quently, it has been significantly extended to stationary random sequences satisfying weak dependence restric-
tions. We focus on distributional mixing condition D(un) and the Berman condition based on covariance among
weak dependence restrictions. The former is assumed for general stationary sequences and the latter for station-
ary normal processes; however, both imply the same distributional limit of the maximum of the normal process.
In this paper D(un) condition is shown weaker than Berman’s covariance condition. Examples are given where
the Berman condition is satisfied but the distributional mixing is not.

Keywords: Berman condition, covariance, extreme value theory, mixing condition, stationary nor-
mal sequence.

1. Introduction

Classical extreme value theory concerns the distributional properties of the maximum of independent
and identically distributed (iid) random variables. Its centerpiece is the “extremal types theorem”
(ETT). It asserts that in the iid setting the only three possible types of non-degenerate limiting distri-
butions G for the maximum are

I: G(x) = exp (−e−x) , −∞ < x < ∞;
II: G(x) = exp (−x−α) , 0 < x < ∞, α > 0;

III: G(x) = exp (−(−x)α) , −∞ < x < 0, α > 0,

where x may be replaced by ax + b for real a > 0, b ∈ R. The family labeled I is also often called
as the double exponential or Gumbel family. Types II and III are widely known as the Fréchet and
Weibull families.

The theory has been significantly extended to include dependence. In particular, the ETT still
holds for a stationary process satisfying weak dependence restrictions. Leadbetter et al. (1983) pro-
vides proof of an ETT under a distributional mixing condition D(un). We focus on the condition
D(un) in this paper and the definition of the D(un) condition will be given in Section 2. Leadbetter and
Rootzén (1998), Leadbetter et al. (2000) and Turkman (2006) obtained the extremal results for ran-
dom fields satisfying the extended D(un)-condition to random fields. These conditions can be written
in terms of finite dimensional distribution functions.
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We consider a stationary normal sequence {ξi} with mean zero and variance one in this paper. Let
Mn = max(ξ1, ξ2, . . . , ξn). It is well-known that in the iid setting Mn has a limiting distribution of the
double exponential type among three extremal types,

P{an(Mn − bn) ≤ x} → exp
(−e−x) as n→ ∞ (1.1)

with an = (2 log n)1/2 and bn = an − (2an)−1{log log n + log 4π}. This convergence also holds for
stationary normal case satisfying some dependence conditions. The dependence condition of normal
sequences is often represented by covariance. Berman (1964) gave simple conditions on covariances
of {ξi} to ensure (1.1). One of Berman’s such conditions is that

ρn log n→ 0 as n→ ∞, (1.2)

where ρn = E(ξiξi+n) is the covariance of the normal process {ξi}. It has been considered as a fun-
damental sufficient condition in proving distributional results for extreme values of correlated data,
see Leadbetter et al. (1983), Lindgren and Rootzén (1987), Embrechts et al. (1999) and recently
Turner and Chareka (2012). The convergence of maxima to the double exponential distribution is
also obtained in the case of stationary normal sequences satisfying the D(un) condition. It is shown
in Leadbetter et al. (1983) that the Berman condition (1.2) implies the condition D(un) for normal
sequences.

Section 2 provides the D(un) condition and a sketch of proof that the Berman condition (1.2) is
no weaker than the condition D(un). In Section 3, some examples satisfying the Berman but not the
D(un) condition are given. Consequently, the D(un) mixing condition is shown to be strictly weaker
than Berman’s condition (1.2) for the convergence of maxima of normal sequences to the double
exponential distribution.

2. Mixing Conditions

The dependence restriction for stationary sequences is often given by using “mixing function”. We
focus on the condition D(un) here. The condition D(un) is a weakened version of such mixing con-
ditions for extreme value theory. It considers only the events of the form {ξi ≤ un} or their inter-
sections for a certain sequence of values {un}. For brevity, we write Fi1,...,ik (u) for Fi1,...,ik (u, . . . , u)
if Fi1,...,ik (x1, . . . , xk) denotes the joint distribution function of random variables ξi1 , . . . , ξik . For se-
quences of constants {an} and {bn} we write an = o(bn) if an/bn → 0 and an = O(bn) if an/bn is
bounded as n → ∞. Leadbetter et al. (1983) defines D(un) condition as: The condition D(un) will be
said to hold if

D(un) = sup
∣∣∣Fi1,...,ip, j1,..., jp′ (un) − Fi1,...,ip (un)F j1,..., jp′ (un)

∣∣∣ = o(1), (2.1)

where the supremum is taken over any integers 1 ≤ i1 < · · · < ip < j1 < · · · < jp′ satisfying
j1 − ip ≥ ln = o(n) and ln → ∞ as n→ ∞.

On the other hand, the dependence restrictions for stationary normal sequences are often repre-
sented by covariances. Among them is the Berman condition (1.2) known as a “very weak” sufficient
condition for the convergence of maxima of normal sequences to double exponential distribution.
Let Φ denote the standard normal distribution function and {un} a sequence of constants such that
n(1 − Φ(un)) converges to a finite limit. By using (3.2), it can be shown that the Berman condition
(1.2) implies that

n
n∑

j=1

|ρ j| exp
(
− u2

n

1 + |ρ j|

)
= o(1), (2.2)
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Lemma 4.3.2 of Leadbetter et al. (1983) for the detail proof. By application of Normal Comparison
Lemma we also have that for some constant K

∣∣∣Fi1,...,is (un) − Φs(un)
∣∣∣ ≤ Kn

n∑
j=1

|ρ j| exp
(
− u2

n

1 + |ρ j|

)

and hence

D(un) ≤ 3Kn
n∑

j=1

|ρ j| exp
(
− u2

n

1 + |ρ j|

)
(2.3)

from the definition of D(un). Thus by (2.2) and (2.3) we can see that the Berman condition implies the
condition D(un). The distribution of the maximum of stationary normal sequences converges to the
double exponential distribution under D(un) as under the Berman condition; in addition, the former
condition is actually weaker than the latter since it is possible to give examples where the latter holds
but the former does not as will be seen in Section 3.

3. Examples

To construct such examples, we define sequences of standard normal random variables with covari-
ances {ρn,ν, n = 0, 1, 2, . . .} for each ν = 3, 4, . . . . The following examples of covariance ρn,ν were
originally suggested for continuous normal processes by Mittal (1979) but are applied to normal se-
quences here. The remainder of this section gives the verification of these examples. The covariances
ρn,ν will be constructed by multiplication of two different covariance sequences γn and δn defined in
the following. It will be shown that for each ν = 3, 4, . . . , {ρn,ν} satisfies the D(un) condition but not
the Berman.

First, we consider

γ(t) =


√

1 − |t|
2e2 , |t| ≤ e2,

1√
log |t|

, |t| > e2.

This is easily seen to satisfy Pólya’s criteria, i.e. γ(t) is real, nonnegative, continuous and convex on
[0,∞) and satisfies γ(t) = γ(−t) and γ(0) = 1. Hence γ(t) is a covariance function. Next, we consider
the sum of countably many independently distributed random variables which take only two values
−a j, a j with probability 1/2 respectively. Its characteristic function is found as

δa(t) =
∞∏
j=1

eia jt + e−ia jt

2

 = ∞∏
j=1

cos
(
a jt

)
.

The δa(t) defines a (singular) covariance function for 0 < a < 1/2 (Lukcas, 1970). Since the product
of two covariance functions is again a valid covariance function, the multiplication of γ(t) and δa(t)
can define a covariance function for 0 < a < 1/2. Now, we have the covariance {ρn,ν, n = 0, 1, 2, . . .}
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for each ν = 3, 4, . . . defined as:

ρn,ν = γ(n)δ 1
ν
(n)

=



(
1 − n

2e2

) 1
2
∞∏
j=1

cos
(
ν− jt

)
, n ≤ e2,

(
log n

)− 1
2

∞∏
j=1

cos
(
ν− jt

)
, n > e2.

We note that since lim supn→∞ |δ1/ν(n)| > 0 (Wintner, 2013),

lim sup
n→∞

ρn,ν log n = lim sup
n→∞

(log n)
1
2 δ 1

ν
(n) = ∞.

Thus we see that Berman’s condition does not hold for {ρn,ν}.
However, the D(un) condition does hold for {ρn,ν}, which will be shown by proving

n
n∑

j=1

∣∣∣ρ j,ν

∣∣∣ exp

− u2
n

1 +
∣∣∣ρ j,ν

∣∣∣
 = o(1) (3.1)

since by (2.3)

D(un) ≤ 3Kn
n∑

j=1

|ρ j,ν| exp
(
− u2

n

1 + |ρ j,ν|

)
.

First, we note that the fact that if the covariance |ρn| → 0 as n → ∞, then |ρn| , 1 for any n , 0
and hence it is bounded away from 1 for all n > 0.

Let τ = sup j≥n |ρ j,ν|, which is clearly less than 1 since ρn,ν → 0 as n → ∞ as noted above. Define
α as a constant such that 0 < α < (1 − τ)/(1 + τ). For notational simplicity, we use K as a constant
whose value may change from line to line. Since n(1 − Φ(un)) converges to a finite limit, we can use
the fact that for sufficiently large n

exp
(
−u2

n

2

)
=

Kun

n
(1 + o(1)) and un =

√
2 log n(1 + o(1)). (3.2)

We split the sum in (3.1) into two parts, the first for 1 ≤ j ≤ [nα] and the second for [nα] < j ≤ n.
By applying (3.2) we see that the first sum is dominated by

nnα exp
(
− u2

n

1 + τ

)
= n1+α exp

(
−u2

n

2

) 2
1+τ

≤ Kn1+α
(un

n

) 2
1+τ

≤ Kn1+α− 2
1+τ (log n)

1
1+τ ,

which tends to zero from the choice of α and hence so does the first part of the sum.
To deal with the second part let An1 = {[nα] < j ≤ n; |ρ j,ν| > (ln j)−2} and An2 = {[nα] < j ≤

n; |ρ j,ν| ≤ (ln j)−2}, where [x] denotes the greatest integer less than or equal to x. Now, we have for
the second part of the sum in (3.1)

n
n∑

j=[nα]+1

|ρ j,ν| exp
(
− u2

n

1 + |ρ j,ν|

)
= n

∑
m∈An1

|ρ j,ν| exp
(
− u2

n

1 + |ρ j,ν|

)
+ n

∑
m∈An2

|ρ j,ν| exp
(
− u2

n

1 + |ρ j,ν|

)
= S 1 + S 2, say.
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Using the same reasoning as for the first part of the sum in (3.1) we have

S 1 ≤ K |An1| n exp
{
− u2

n

1 + τ(nα)

}
≤ K |An1| n

1− 2
(1+τ(nα )) (log n)

1
(1+τ(nα)) , (3.3)

where τ(l) = sup j≥l |ρ j,ν|. We claim that |An1| = o(nκ) with κ = 1 − (log 2/2 log ν). If not, |ρ j,ν| >
(log j)−2 on a set of size O(nκ), which implies

∑n
j=0 |ρ j,ν|2 ≥ Knκ/(log n)4 contradicting

∑n
j=0 |ρ j,ν|2 ≤

Kn1−(log 2/ log ν). This inequality follows from the definition of {ρn,ν} and (4.2) in Appendix. Moreover,
τ(nα) = o(1) because ρn,ν = o(1). Hence the rightmost-hand side of (3.3) tends to zero as n→ ∞.

Next, for S 2 we note that |ρ j,ν| ≤ (log j)−2 for j ∈ An2 and (log n)−2 is decreasing in n. sup j∈An2
|ρ j,ν| ≤

(α log n)−2 and hence by using (3.2) we have for sufficiently large n

S 2 ≤ n2(α log n)−2 exp
(
−u2

n

)
exp

{
u2

n(α log n)−2
}
= Ku2

n(α log n)−2 exp
{
u2

n(α log n)−2
}
,

which tends to zero. Thus (3.1) holds for {ρn,ν} and consequently the D(un) condition holds by (2.3).

4. Concluding Remarks

As noted in Section 1, Mn converges to the double exponential distribution for the stationary (standard)
normal sequence under Berman condition or D(un) condition;

P{an(Mn − bn) ≤ x} = P
{

Mn ≤
x

an
+ bn

}
→ exp

(−e−x) as n→ ∞ (4.1)

with an = (2 log n)1/2 and bn = an − (2an)−1{log log n + log 4π}. In the D(un), the sequence {un} is
necessary to satisfy that n(1−Φ(un)) converges to a finite limit. If we take n(1−Φ(un)) = e−x and use
the well-known relation for the tail of Φ

1 − Φ(u) ∼ ϕ(u)
u

as u→ ∞,

where ϕ(u) denotes the standard normal probability density function, then after some computations
we have

un = (2 log n)
1
2

1 +
x − 1

2 log 4π − 1
2 log log n

2 log n
+ o

(
1

log n

)
=

x
an
+ bn + o

(
a−1

n

)
.

Hence (4.1) would be written as P{Mn ≤ un} → exp(e−x) for such un under Berman or D(un) condition.
We also remark that in general stationary case, the same limiting distribution of Mn as in the iid

would not be assured only under the D(un) condition but the “local” condition is additionally required
for it. In stationary normal case, the finite convergence of n(1 − Φ(un)) implies the “local” condition.

Appendix

We claim for ν = 3, 4, . . .
n∑

j=0

∣∣∣∣δ 1
ν
( j)

∣∣∣∣2 = O
(
n1−

(
log 2
log ν

))
. (4.2)
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Proof: Since cos2 x ≤ 1 and cos x = (eix + e−ix)/2, we have for any integer k and j , 0∣∣∣∣δ 1
ν
( j)

∣∣∣∣2 = ∞∏
l=1

∣∣∣∣cos
(

jν−l
)∣∣∣∣2 < k∏

l=1

∣∣∣∣cos
(

jν−l
)∣∣∣∣2 = C j

22k ,

where C j =
∏k

l=1 |eiν−l j + e−iν−l j|2. Thus

n−1∑
j=0

∣∣∣∣δ 1
ν
( j)

∣∣∣∣2 < 2−2k
n−1∑
j=0

C j. (4.3)

Now, we consider the upper bound for C j. Let I = {i = (i1, . . . , ik) ; il ∈ {−1, 1}, l = 1, . . . , k}. Clearly
|I| = 2k. Let t(i) =

∑k
l=1 ilν−l for i = (i1, . . . , ik) ∈ I and let I2 denote the set {(a, b) ∈ I × I ; a , b}.

Then

C j =

∣∣∣∣∣∣∣∑a∈I

exp(i jt(a))

∣∣∣∣∣∣∣
2

=
∑
a∈I

1 +
∑

(a,b)∈I2

cos( j(t(a) − t(b))).

Also
n−1∑
j=0

∑
(a,b)∈I2

cos( j(t(a) − t(b))) =
∑

(a,b)∈I2

n−1∑
j=0

cos( j(t(a) − t(b)))

=
∑

(a,b)∈I2

cos
(

(n − 1)(t(a) − t(b))
2

)
sin(n(t(a) − t(b))/2)
sin((t(a) − t(b))/2)

<
∑

(a,b)∈I2

1
|sin((t(a) − t(b))/2)| ,

which does not exceed π
∑

(a,b)∈I2 |t(a) − t(b)|−1 by the inequalities that sin |x| > 2|x|/π for 0 < |x| < 1
and |t(a) − t(b)| ≤ ∑k

j=1 |a j − b j|ν− j < 2 for any ν = 3, 4, . . . . Hence we have

n−1∑
j=0

C j < n2k +
∑

(a,b)∈I2

π

|t(a) − t(b)| . (4.4)

Now, define d(a, b) = inf{ j ; a j , b j} for any (a, b) ∈ I2 and I2
j = {(a, b) ∈ I2 ; d(a, b) = j}. By

definitions, 1 ≤ d(a, b) ≤ k and |I2
j | = 22k− j, j = 1, . . . , k. If (a, b) ∈ I2

j for some j, then

|t(a) − t(b)| > |a j − b j|ν−n − 2
∣∣∣ν− j−1 + ν− j−2 + · · · + ν−k

∣∣∣ > 2Cν− j,

where C = (ν − 2)/(ν − 1) < 1 (C is positive and depends only on ν), so that

∑
(a,b)∈I2

1
|t(a) − t(b)| =

k∑
j=1

∑
(a,b)∈I2

j

1
|t(a) − t(b)|

<

k∑
j=1

∑
(a,b)∈I2

j

ν j

2C
<=

k∑
j=1

ν j

2C

∣∣∣I2
j

∣∣∣ = 22k

2C

k∑
j=1

(
ν

2

) j
.
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Thus it follows from (4.4) that

n−1∑
j=0

C j < K2k

n + 2k
k∑

j=0

(
ν

2

) j


for some constant K depending only on ν. Hence from (4.3) we obtain that since ν = 3, 4, . . .

n−1∑
j=0

∣∣∣∣δ 1
ν
( j)

∣∣∣∣2 < C
2k

(
n + νk

)
Now, take k =

[
log n/ log ν

]
. Then since 2log n/ log ν = nlog 2/ log ν and νlog n/ log ν = n, we have that

n−1∑
j=0

∣∣∣∣δ 1
ν
( j)

∣∣∣∣2 = O
(
n1− log 2

log ν

)
.

�
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