• Title/Summary/Keyword: Normal Stiffness

Search Result 405, Processing Time 0.026 seconds

Evaluation of Thermal Degradation of CFRP Flexural Strength at Elevated Temperature (온도 상승에 따른 탄소 복합재의 굽힘 강도 저하 평가)

  • Hwang Tae-Kyung;Park Jae-Beom;Lee Sang-Yun;Kim Hyung-Geun;Park Byung-Yeol;Doh Young-Dae
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.20-29
    • /
    • 2005
  • To evaluate the flexural deformation and strength of composite motor case above the glass transition temperature$(T_g),\;170^{\circ}C$, of resin material, a finite element analysis(FEA) model in which material non-linearity and progressive failure mode were considered was proposed. The laminated flexural specimens which have the same lay-up and thickness as the composite motor case were tested by 4-point bending test to verify the validity of FEA model. Also. mechanical properties in high temperature were evaluated to obtain the input values for FEA. Because the material properties related to resin material were highly deteriorated in the temperature range beyond $T_g$, the flexural stiffness and strength of laminated flexural specimen in $200^{\circ}C$ were degraded by also $70\%\;and\;80\%$ in comparison with normal temperature results. Above $T_g$, the failure mode was changed from progressive failure mode initiated by matrix cracking at $90^{\circ}$ ply in bottom side and terminated by delamination at the center line of specimen to fiber compressive breakage mode at top side. From stress analysis, the progressive failure mechanism was well verified and the predicted bending stiffness and strength showed a good agreement with the test results.

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

Evaluation of the Stability of Ipseok-dae Columnar Joints in Mudeungsan National Park Using 3DEC (3DEC을 이용한 무등산국립공원 입석대 주상절리대의 안정성 평가)

  • Noh, Jeongdu;Kang, Seong Sueng
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.351-361
    • /
    • 2022
  • Numerical analysis performed to predict the behavior of Ipseok-dae columnar joints in Mudeungsan National Park to understand their stability and movement. The numerical analysis technique, 3DEC, is based on the discrete element method that can analysis discontinuities. The analysis used data for material properties derived from laboratory tests, which found that average density was 2.68 kN/m3, average normal stiffness was 3.15 GPa/m, average shear stiffness was 1.00 GPa/m, average cohesion was 0.51 MPa, and the average friction angle was 33°. The Ipseok-dae columnar joints were modeled on the basis of the field survey data for 15 joints located between the observation platform and the hiking trail. The numerical analysis assessed the behavior of each columnar joint by interpreting the displacement of the edges of its upper and lower surfaces. The greatest maximum displacement was found in columnar joint No. 6, and the greatest minimum displacement was found in joint No. 11. Analyzing the movements of five discontinuities in joint No. 11 indicated that the maximum displacement occurred at the 2nd level. The other levels were ordered 5th, 4th, 1st, and 3rd in terms of subsequent greatest displacements. Considering the total displacement in the 15 studied joints, the Ipseok-dae columnar joints are judged to be stable. However, considering the cultural and historical value of Mudeungsan National Park, it is regarded that the currents slope stability should be maintained by monitoring the individual rock blocks of the joints.

Track-Structure Interaction Analysis of Fast Hardening Track on Railway Bridge Considering Effect of Anchor and Friction (앵커와 마찰의 영향을 고려한 교량상 급속경화궤도의 궤도-교량 상호작용해석)

  • Cho, Sang-Hyeon;Lee, Il-Wha;Chung, Won-Seok;Lee, Hee-Young;Lee, Kyoung-Chan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.1
    • /
    • pp.53-61
    • /
    • 2018
  • Ballast track requires constant maintenance work due to progress of track irregularity. Fast Hardening Track(FHT) has been developed to reduce the maintenance effort done by injecting fast hardening mortar in aged ballast to convert slab track. For the application of FHT to a railway bridge, post-installed anchors should be placed at center of the track segment to fix it on bridge. This paper presents track-bridge interaction analysis results with FHT considering stiffness and strength of post-installed anchor, age of FHT concrete and friction between FHT and bridge deck surface. Based on the analysis results, this study suggests when is good to install the anchors and allow normal operation of passing train.

Fragility Analysis of A Scaled Model of Reinforced Concrete Column in Accordance with Similitude Law (상사법칙이 적용된 철근콘크리트 기둥 축소모형의 지진 취약도 분석)

  • Park, Dong Uk;Jeon, Bub Gyu;Kim, Nam Sik;Park, Jamin;Cho, Jae-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2017
  • Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete (포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구)

  • Keon, Seung-Zun;Doh, Young-Soo;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.185-197
    • /
    • 2001
  • This paper dealt with modification of effective crack length model (ECM) by adding Poisson's ratio term to evaluate fracture toughness of asphalt concrete which varies its material property by temperature. The original ECM model was developed for solid materials, such as cement concrete, and Poisson's ratio of materials was not considered. However, since asphalt concrete is sensitive to temperature variation and changes its Poisson's ratio by temperature, it should be taken into consideration to know exact fracture property under various temperatures. Four binders, including 3 polymer-modified asphalt (PMA) binders, were used to make a dense-grade asphalt mixture and 3-point bending test was peformed on notched beam at low temperatures, from -5oC to 35oC. Elastic modulus, flexural strength and fracture toughness were obtained from the test. The results showed that, since Poisson's ratio was considered, the more accurate test values could be obtained using modified ECM equation than original ECM. PMA mixture showed higher stiffness and fracture toughness than normal asphalt mixture under very low temperatures.

  • PDF

Body Types and Its Relation with the Body Type Awareness, and Subjective Symptoms of Female High School Students in an Urban Area (도시지역 여자고등학생들의 체형과 체형에 대한 의식 및 자각증상과의 관계)

  • Ryu, Kwang-Ha;Kwon, In-Sun;Kim, Hyeong-Seon;Cho, Young-Chae
    • Journal of the Korean Society of School Health
    • /
    • v.21 no.2
    • /
    • pp.13-22
    • /
    • 2008
  • Purpose : This study investigated the relationship between body type, subjective symptoms and health awareness in female high school students Methods : The subjects were 393 students at the female high school in Taejon City by self-recorded questionnaires in May, 2006. Results : In the classification of body type based on the degree of obesity, low weight group was 20.9%, normal weight group was 58.0%, over weight group was 11.7% and obesity group was 9.4%. In the level of body type wareness, those who consider themselves to be obesity type 13.7%, standard type were 43.8%, and leptosomic type 8.1%, but there was a clear tendency to be leptosomic type that the rate was 76.3%. In the complaint rates of subjective symptoms, “fatigue” was the highest, followed by “neck pain(stiffness)”, “dizziness”, “stomachache” in the descending order. In the complaint rates of subjective symptoms by the degree of obesity, dizziness, irregular menstruation and anorexia were higher according to the lower obesity, but constipation and wearied eyes were the higher the more obesity. Conclusion : The study results showed that the recent female high school students were clear tendency to be leptosomic type, and leptosomic and obesity type were related with subjective symptoms. Considering these findings, it appeared that being excessively thin is related to symptoms and young women's thinness-oriented attitudes are unhealthful.

Study on through the thickness stresses in the corner radius of a laminated composite structure (복합재 구조물의 모서리 곡면 부위에 대한 두께방향 응력 연구)

  • Kim, Sung Joon;Hwang, In Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.665-672
    • /
    • 2013
  • One of the major causes of stiffness and strength degradations in laminated composite structures is the delamination between composite layers. In most engineering applications, laminated composite structures have certain curvatures. If the curved composite structure is subjected to bending that tends to flatten the composite structures, through the thickness stresses can be generated in the thickness direction of the composites. Under normal operation open mode delamination could occur at the sites of peak interlaminar stress. This paper describes a technique to determine radial direction stress of a laminated composite structure using a curved beam. Stacking sequence effects of interlaminar stress were studied. The radial location and intensity of the open mode delamination stress were calculated and compared with the results obtained from the analytical solution and finite element method.

Isolation of Differentially Expressed Genes in Chondrocytes Treated with Methylprednisolone by Subtractive Hybridization

  • Kim, Ji-Hee;Kang, Soon-Min;Suh, Jin-Soo;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.8 no.3
    • /
    • pp.195-202
    • /
    • 2002
  • Osteoarthritis (OA), the most common form of arthritis, involves the destabilization of the normal balance between the degradation and the synthesis of articular cartilage and subchondral bone within a joint. As articular cartilage degrades over time, its smooth surface roughens and bone-against-bone contact ensues, producing the inflammation response symptomatic of this 'wear and tear' disease. Although a variety of genetic, developmental, metabolic, and traumatic factors may initiate the development of osteoarthritis, its symptoms (joint pain, stiffness, and curtailed function) typically evolve slowly, and patients experience periods of relative calm alternation with episodes of inflammation and pain. Rheumatoid arthritis (RA), an autoimmune disease of unknown etiology characterized by chronic synovitis and cartilage destruction, affect 1% of the total population. Cartilage is a specialized connective tissue in which the chondrocytes occupy only 5% of the volume. Cartilage is particularly rich in extracellular matrix, with matrix making up 90% of the dry weight of the tissue chondrocytes have cell processes that extend a short distance into the matrix, but do not touch other cells thus in cartilage, cell-matrix interactions are essential for the maintenance of the extracellular matrix. In this study, subtractive hybridization method was utilized to detect genes differentially expressed in chondrocytes treated with methylprednisolone. We have isolated 57 genes that expressed differentially in the chondreocytes by methylprednisolone. 13 clones of them were analyzed with sequencing and their homologies were searched. 8 cDNAS included KIAA 0368, upregulated during skeletal muscle growth 5 (usmg 5), ribosomal protein S 18 (RPS 18), skeletal muscle ryanodine receptor, radial spoke protein 3 (RSP 3), ribosomal protein QM, ribosomal protein L37a (RPL37A), cytochrome coxidase subunit VIII (COX8).

  • PDF