• Title/Summary/Keyword: Normal Stiffness

Search Result 405, Processing Time 0.025 seconds

Effect of Manual Therapy on a Patient With Atlantoaxial Rotatory Subluxation (환축추 회전 아탈구 환자에 대한 도수치료 효과)

  • Jeon, Jae-guk;Yang, Seong-hwa;Shin, Eui-ju
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.25 no.1
    • /
    • pp.71-76
    • /
    • 2019
  • Background: An 8-year-old girl had severe neck pain and stiffness after trauma. CT scan showed atlantoaxial rotatory subluxation (AARS). She had conservative treatment because she did not have neurological symptoms and spinal basilar artery dysfunction. Conservative therapy was halter traction twice for 4 weeks. However, pain and stiffness persisted. She had been recommended to have surgery from her physician, but she received manual therapy for non-surgical procedures. Methods: The joint mobilization, muscle energy technique, motor control exercise, and deep neck flexor (DNF) endurance exercise were applied as manual therapy and 10 session for 2weeks. Results: Clinical outcomes were measured at initial baseline, after 2 weeks, and after 6weeks. Active range of motion was completely restored after 6weeks and numeric pain rating scale was completely reduced after 2 weeks. The strength of neck flexor muscle recovered to normal after 2 weeks, and the DNF endurance was improved to 25 seconds after 2 weeks and to 42 seconds after 6weeks. Motor control capacity recovered to 30 ㎜Hg after 2 weeks. Conclusions: This case report describes the immediate and short-term clinical outcomes for a patient presenting with symptoms of neck pain following AARS. Clinical rationale and patient preference aided the decision to incorporate manual therapy as a treatment for this patient. Manual therapy has shown a successful recovery in AARS patients, more research is needed to validate the inference of this case report.

Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire exposures

  • Mirza, Olivia;Shil, Sukanta Kumer;Rashed, M.G.;Wilkins, Kathryn
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.529-542
    • /
    • 2021
  • Shear connectors are required to build composite (concrete and steel) beams. They are placed at the interface of concrete and steel to transfer shear and normal forces between two structural components. Such composite beams are sensitive to provide structural integrity when exposed to fire as they loss strength, stiffness, and ductility at elevated temperature. The present study is designed to investigate the shear resistance and the failure modes of the headed stud shear connectors at fire exposure and post-fire exposure. The study includes ordinary concrete and concrete with carbon nanotubes (CNTs) to build composite (concrete-steel) beams with structural steel. Experimental push tests were conducted on composite beams at ambient and elevated temperatures, such as 200, 400 & 600℃. Moreover, push tests were performed on the composite beams after being exposed to 200, 400 & 600℃. Push test results illustrated the reduction of ultimate shear capacity and stiffness of headed stud shear connectors as the temperature increased. Although similar values of ultimate shear were obtained for the headed stud connectors in both ordinary and CNT concrete, the CNT modified concrete reduced the concrete spalling and cracking compared to ordinary concrete and was observed to be effective at temperatures greater than 400℃. All specimens showed a lower shear resistance at fire exposures compared to the corresponding post-fire exposures. Moreover, numerical simulation by Finite Element (FE) analyses were carried out at ambient temperature and at fire conditions. The FE analysis results show a good agreement with the experimental results. In the experimental studies, failure of all specimens occurred due to shear failure of headed stud, which was later validated by FE analyses using ABAQUS.

Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm (고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템)

  • Kim, Sung Chan;Kim, Byung Joo;Kim, E Dam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.1
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

Dynamic Characteristics and Instability of Submerged Plain Journal Bearings in accordance with the Cavitation Model (공동현상 모델에 따른 침수형 평면 저널베어링의 동특성 및 회전 안정성에 대한 연구)

  • Moonho Choi
    • Tribology and Lubricants
    • /
    • v.39 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Cavitation phenomena observed during the operation of a submerged plain journal bearing (PJB) can affect bearing performance parameters such as dynamic coefficients, whirl frequency ratio, and critical mass. This study presents numerical solutions of the Reynolds equation for steadily and dynamically loaded submerged PJBs with half-Sommerfeld (HS), Reynolds, and Jakobsson-Floberg-Olsson (JFO) cavitation models when the supply pressure is larger or equal to the cavitation pressure. The loads at various eccentricity ratios are identical; however, the attitude angle is approximately 6% smaller when the eccentricity ratio is between 0.2 and 0.7 and the JFO model is used, compared to that when the Reynolds model is used. Dynamic coefficients obtained with the HS and Reynolds model show good agreement with each other, except for kxz, which is sensitive to changes in the force normal to the rotor weight, and is attributed to the difference in the attitude angle obtained with each cavitation model. Stiffness coefficients are determined using the pressure distribution in the film, and therefore, when the JFO model is used, the direct stiffness coefficients are affected and show opposite signs for most eccentricity ratios. The mass-conservative JFO model can predict at least a 30% smaller critical mass compared to that using the HS and Reynolds models. Thus, the instability analysis results can change based on the cavitation model used in a submerged PJB. The results of this research indicate that the JFO model should be used when designing a rotor system supported by submerged PJBs.

Elastic-plastic Micromechanics Modeling of Cross-anisotropic Granular Soils: II. Micromechanics Analysis (직교 이방적 사질토의 미시역학적 탄소성 모델링: II. 미시역학적 해석)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.89-100
    • /
    • 2007
  • In the companion paper, we provided the novel elastic-plastic constitutive model based on the micromechanics theory. Herein, the elastic and elastic-plastic deformation of granular soils is meticulously analyzed. To guarantee high accuracy of the microscopic parameter, the systematic procedure to evaluate the parameters is provided. The analysis of the elastic response during the isotropic and triaxial compression shows that the stress-level dependency of cross-anisotropic elastic moduli is induced by the power relationship of the contact force in the normal contact stiffness, while the evolution of fabric anisotropy is more pronounced during triaxial compression. The micromechanical analysis indicates that the plastic strains are likely to occur at very small strains. The plastic deformation of tangential contacts has an important role in the reduction of soil stiffness during axial loading.

Assessment of the characteristics of ferro-geopolymer composite box beams under flexure

  • Dharmar Sakkarai;Nagan Soundarapandian
    • Advances in concrete construction
    • /
    • v.15 no.4
    • /
    • pp.251-267
    • /
    • 2023
  • In this paper, an experimental investigation is carried out to assess the inherent self-compacting properties of geopolymer mortar and its impact on flexural strength of thin-walled ferro-geopolymer box beam. The inherent self-compacting properties of the optimal mix of normal geopolymer mortar was studied and compared with self-compacting cement mortar. To assess the flexural strength of box beams, a total of 3 box beams of size 1500 mm × 200 mm × 150 mm consisting of one ferro-cement box beam having a wall thickness of 40 mm utilizing self-compacting cement mortar and two ferro-geopolymer box beams with geopolymer mortar by varying the wall thickness between 40 mm and 50 mm were moulded. The ferro-cement box beam was cured in water and ferro-geopolymer box beams were cured in heat chamber at 75℃ - 80℃ for 24 hours. After curing, the specimens are subjected to flexural testing by applying load at one-third points. The result shows that the ultimate load carrying capacity of ferro-geopolymer and ferro-cement box beams are almost equal. In addition, the stiffness of the ferro-geoploymer box beam is reduced by 18.50% when compared to ferro-cement box beam. Simultaneously, the ductility index and energy absorption capacity are increased by 88.24% and 30.15%, respectively. It is also observed that the load carrying capacity and stiffness of ferro-geopolymer box beams decreases when the wall thickness is increased. At the same time, the ductility and energy absorption capacity increased by 17.50% and 8.25%, respectively. Moreover, all of the examined beams displayed a shear failure pattern.

Shear Behavior Characteristics of Rock Joints Considering Roughness Parameters (암석 절리면의 거칠기와 전단거동의 특성 분석)

  • Kim, Dong-Kyu;Hong, Young-Ki;Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.384-395
    • /
    • 2016
  • Both the roughness measurement tests and the multi-stage shear tests were carried out on the 110 rock joint samples in order to investigate the influences of rock type, joint roughness and normal stress on the shear behaviour of rock joints. Test samples were composed of quartz porphyry, dacite, granite and gneiss, which were classified into three detailed groups according to their JRC values. Roughness parameters of rock joints were analyzed by roughness measurement tests, and shear characteristics were also investigated by multi-stage shear tests. Both peak shear strength and shear stiffness were increased as both joint roughness and normal stress were increased, whereas dilation angles showed lower values at the lower roughness and higher normal stress conditions. Besides, shear characteristics obtained from all tests of four different rock types with different rock strengths showed irrelevant details, therefore the influences of both joint roughness and normal stress on shear behaviors were found to be more considerable than the strength of intact rock. The results obtained from both multi-stage shear tests and direct shear tests were finally compared, where the dilation angles obtained from multi-stage shear tests were found to be valid only for the first normal stress conditions.

Follower Effect of the Axisymmetric Shells under External Pressure (축대칭 쉘 구조물에 작용하는 외압의 부가효과)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.195-202
    • /
    • 2004
  • The shell due to the effect of initial normal pressures on the shell surface was based on the assumption that the directions of the pressures are always normal to the undeformed shell surface, and that the change in the surface area of the shell is negligible. But the fact that the pressure are always normal to the deforming surface leads "follower force". The follower effect in the analysis can significantly alter the solution for natural frequency and buckling load as compared to the case when the direction of the pressures are assumed to be normal to the uniform shell surface. The expression for the part of strain energy contribution from normal pressure due to the effect of follower force was derived and added to the element stiffness matrix of axisymmetric shell. In the case of increasing external pressure, the natural frequencies decrease until one of them reaches zero. Theoretically the smallest applied load that reduces the frequency of any mode to zero, will have same magnitude as that of the buckling load. In order to determine the bucking load of the shell a few sets of frequencies are computed and the results considering the follower effects are well with the exact solution while the case without that are quite different. But in case of hemispherical dome, there are little difference in buckling pressure between with and without the effect of follower force.

The Effects of Plasma Homocysteine Concentration on Upper Arm-Ankle Pulse Wave Velocity (혈장 호모시스테인 농도가 상완-발목 맥파 속도에 미치는 영향)

  • Kang, Ji-Hun;Shin, Sang-Yol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.673-680
    • /
    • 2019
  • This study was conducted to investigate the effects of plasma homocysteine concentration on the brachial-ankle pulse wave velocity between the normal homocysteine group and the asymptomatic high homocysteine group. 435 subjects who visited the general health examination center from April 1 to October 31, 2016, as well as to compare the direct correlation of the brachial-ankle pulse wave velocity, which indirectly reflects the homocysteine test and arterial stiffness, as a predictor of future cardiovascular outcome. As a result of the study, age, waist circumference, BUN, and plasma creatinine were significantly higher, and HDL was significantly lower in the high homocysteine group (> $15{\mu}mol/L$) than in the normal homocysteine group (< $15{\mu}mol/L$) (p=0.05). In addition, homocysteinemia was associated with smoking and drinking (p<0.001) and was significantly higher in males (p<0.001). The right and left brachial-to-ankle pulse wave velocities were significantly higher in the high homocysteine group (right p<0.001, left p=0.003) before calibrating the relevant variables. There was no significant difference between right and left brachial-to-ankle pulse wave velocities after calibrating the relevant variables. Therefore, further studies on the independent association of lowering homocysteine concentration and prevention of cardiovascular disease and the relationship between homocysteine and renal function are needed.

Effect of joint mobilization on improvement of knee pain, isokinetic strength, muscle tone, muscle stiffness in an elite volleyball player with knee injury (무릎손상 엘리트 배구선수에 관절가동운동이 무릎통증, 등속성 근력, 근긴장도, 근경직 개선에 미치는 효과)

  • Wang, Joong-San;An, Ho-Jung;Kim, Yong-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.326-333
    • /
    • 2016
  • This case study identified the effects of joint mobilization on knee pain, isokinetic strength, muscle tone, and muscle stiffness in an elite volleyball player with a knee injury. The subject had experienced cartilage defects of the left knee joint and underwent surgery to correct the condition. The patient complained of continuous pain in the left knee joint in daily life in addition to pain during exercise. The study was conducted from August 5 to 12, 2015 and joint mobilization was applied to the left knee joint for 15 minutes once a day for 8 days. Knee pain was measured using a visual analogue scale, and the concentric peak torque of the quadriceps and hamstring muscles was measured using an isokinetic muscular strength measurement device. The muscle tone and stiffness of the rectus femoris muscle, vastus medialis, and vastus lateralis on the injured side were measured using a myotonometer. All the measurements were conducted before and after the intervention. Joint mobilization was effective in reducing knee pain on the injured side, increasing the concentric peak torque of the quadriceps and hamstring muscles on both sides, and increasing the muscle stiffness of the quadriceps muscle on the injured side. Concentric peak torque of the quadriceps muscle on the injured side increased a great deal as the number of joint mobilizations was increased, largely diminishing the difference in concentric peak torque between the normal side and injured side. On the other hand, joint mobilization was ineffective in improving the hamstring to quadriceps strength ratio on the injured side. While this study suggests that joint mobilization can be an effective intervention to improve the knee pain, isokinetic strength, and muscle stiffness of elite volleyball players, it should be performed alongside training for an appropriate strength ratio.