• Title/Summary/Keyword: Normal Gait

Search Result 368, Processing Time 0.021 seconds

A Comparison of Gait Characteristics between Korean and Western Young People (한국인과 서구인 청년층의 보행특성 비교)

  • Im, Wan-Su;Choe, Hwa-Sun;Jeong, Min-Geun;Ryu, Tae-Beom;Choe, Hun-U
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.33-42
    • /
    • 2006
  • It is important to analyze the characteristics of normal gait in clinical and biomechanical aspects. Although gait characteristics can be varied by anthropometric, racial and cultural factors, normal gait studies have been performed mostly for Western people. The present study conducted a gait analysis for Korean young adults and compared the gait characteristics with those of Western people for the establishment of Korean normal gait data. A total of thirty-two adults in twenties(20 males and 12 females) were participated in the gait experiment and their spatio-temporal and kinematic/kinetic gait characteristics were analyzed. The comparison of the gait characteristics between Korean and Western people, revealed that the stride length and walking speed of Korean were significantly smaller than those of Western people by 0.1~0.3m and 0.15~0.40m/s respectively. And the knee abduction moment of Korean was larger than that of Western people, while the other moments(such as hip flexion/extension moments, abduction/adduction moments, and knee flexion/extension moments) were smaller than those of Western people. The ranges of joint angles between the gait studies were largely different with each other, but most of motion patterns and excursions were similar.

Influence of Smart Phone Use on Gait Pattern in Healthy Adults (스마트폰 사용이 건강한 성인의 보행패턴에 미치는 영향)

  • Moon, Jong-Hoon;Kim, Sung-Hyun;Na, Chang-Ho;Hong, Deok-Gi;Heo, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.199-206
    • /
    • 2018
  • This study was to investigate the Influence of smart phone use on gait in healthy adults. Twenty healthy adults were recruited in this study. All subjects performed twice for each normal gait and smart phone gait. The normal gait walked at their chosen speed, and the smart phone gait walked while watching the video. GAITRite system was used to identify the temporal and spatial variables related to the gait pattern during walking. Statistical analysis was analyzed by paired t-test. In comparison of temporal variables, smart phone gait was significantly lower in gait speed and cadence than in normal gait(p<.05), and was significantly longer in single support time and double support time(p<.05). In comparison of spatial variables, smart phone gait was significantly shorter in step length and stride length than in normal gait(p<.05) and significantly longer in step width(p<.05). The results of this study demonstrated that smartphone use can negatively affect the correct gait patterns during walking.

Fabrication of shoes for analyzing human gait pattern using strain sensors (스트레인센서를 이용한 걸음걸이 패턴 분석 신발제작)

  • Kim, Eung-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.9
    • /
    • pp.1407-1412
    • /
    • 2013
  • The human gait pattern analysis shoes have been developed for our healthy lfe, which is largely dependent on a posture and a skeletal structure affected by daily lifestyle and gait pattern. There are generally 3 types of human gait, such as normal gait, intoeing gait, and outtoeing gait. We have analyzed one's gait pattern through walking put on the developed shoes.

Development of the Automatic Knee Joint Control System for a Knee-Ankle-Foot Orthosis Using an Electromechanical Clutch (전자-기계식 클러치를 이용한 장하지 보조기용 무릎관절 자동 제어 장치의 개발)

  • 이기원;강성재;김영호;조강희
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.359-368
    • /
    • 2001
  • A new knee-ankle-foot-orthosis(KAFO) which uses an automatically-controlled electromechanical wrap spring clutch for the knee joint was developed in the present study. It was found that the output voltage from the foot switches of the developed KAFO was proportionally increased with respect to the applied load. The output voltage from the infrared sensor also decreased as the knee flexion angle increased. The knee joint system for the new KAFO weighs only 780g lighter than any other commercially available developed system. In addition, the solenoid reduces the reaction time for the automatic control of the knee joint. The static torque of the clutch was measured for three persons, and it satisfied the normal knee extension moment during the pre-swing. Three-dimensional gait analyses for three different gait patterns (normal gait, locked-knee gait, controlled-knee gait) from five normal subjects were conducted. Controlled-knee gait showed the maximum knee flexion angle of 40.56$\pm9.55^{\circ}$ and the maximum knee flexion moment of 0.20$\pm$0.07Nm/kg at similar periods in the normal gait. Our KAFO system satisfies both stability during stance phase and free knee flexion during the swing phase at the proper period during the gait cycle. Therefore, our KAFO system would be very useful in various low extremity orthotic applications.

  • PDF

Comparison Gait Analysis of Normal and Amputee: Filtering Graph Data Based on Joint Angle

  • Junhyung Kim;Seunghyun Lee;Soonchul Kwon
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.61-67
    • /
    • 2023
  • Gait analysis plays a key role in the research field of exploring and understanding human movement. By quantitatively analyzing the complexity of human movement and the various factors that influence it, it is possible to identify individual gait characteristics and abnormalities. This is especially true for people with walking difficulties or special circumstances, such as amputee, for example. This is because it can help us understand their gait characteristics and provide individualized rehabilitation plans. In this paper, we compare and analyze the differences in ankle joint motion and angles between normal and amputee. In particular, a filtering process was applied to the ankle joint angle data to obtain high accuracy results. The results of this study can contribute to a more accurate understanding and improvement of the gait patterns of normal and amputee.

Gait characteristics of normal people : Adults and children (정상인의 보행특성분석 : 성인 및 어린이)

  • Kim, Y.H.;Yang, G.T.;Lim, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.331-334
    • /
    • 1996
  • The present study was performed to investigate gait characteristics of 30-39 year-old normal adults and 9-10 year-old children. The results focused on joint motions in the sagittal plane and ground reaction forces. The results will play an important role as a valuable data to determine normal and abnormal gait patterns as well as gait characteristics of Korean people.

  • PDF

Compensatory Strategy Observed in the Simulated Crouch Gait of Healthy Adults (정상인에서 쭈그림보행 시뮬레이션 시 관찰된 보상적 전략)

  • Kim, Tack-Hoon;Kwon, Oh-Yun;Yi, Chung-Hwi;Cho, Sang-Hyun;Kwon, Hyuk-Cheol;Kim, Young-Ho
    • Physical Therapy Korea
    • /
    • v.11 no.1
    • /
    • pp.53-67
    • /
    • 2004
  • This simulation study investigated the characteristics of normal gait, $30^{\circ}$ crouch gait, $30^{\circ}$ crouch/equinus gait, $45^{\circ}$ crouch gait, $45^{\circ}$ crouch/equinus gait. The knee flexion angles were restricted using a specially designed orthosis. This study was carried out in a motion analysis laboratory of the National Rehabilitation Center. Fifteen healthy male subjects were recruited for the study. The purposes of this study were (1) to compare spatiotemporal parameters, kinematics, and kinetic variables in the sagittal plane among the different gait, (2) to investigate the secondary compensatory strategy, and (3) to suggest biomechanical physical therapy treatment methods. The pattern and magnitude observed in each condition were similar to those of normal gait, except the peak knee extension moment of the unrestricted ankle motion-crouch gait. However, the speed of the $45^{\circ}$ crouch gait was half that of a normal gait. The ankle joint moment in the crouch/equinus gait showed the double-bump pattern commonly observed in children with spastic cerebral palsy, and there was no significant difference in gait speed as compared with normal gait. The peak ankle plantar-flexor moment and ankle power generated during the terminal stance in the crouch/equinus conditions were reduced as compared with normal and $45^{\circ}$ crouch gaits (p<.05). The crouch/equinus gait at the ankle joint was an effective compensatory mechanism. Since ankle plantarflexion contracture can be exacerbated secondary to the ankle compensatory strategy in the crouch/equinus gait, it is necessary to increase the range of ankle dorsiflexion and the strength of plantarflexion simultaneously to decrease the abnormal biomechanical advantages of the ankle joint.

  • PDF

Electromyographic analysis of gait cycle in hemiplegic patients after stroke (뇌졸중 이후 편마비 환자의 보행에서 근전도 분석)

  • Kwon Young-Shil;Jung Byong-Ok;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.11 no.1
    • /
    • pp.129-136
    • /
    • 1999
  • The purpode of this study was to determine the EMG characteristies of 7 subjects with hemiplegic gait receiving therapeautic exercise after stroke. The akin electrode and gait analysis system were used. The normal gait of 6 health volunteers was analysised. The results were following. 1. Gluteus maximus, the extensor of hip joint had high level of activity compared to normal, and had two peak in late stance phase and early Swing phase. 2. Medial hamstring, the flexor of knee joint had low level of activity compared to normal, and had continuous low amplitude pattern. 3. Vastus lateralis, the extensor of knee joint had high level of activity compared to normal, and had not continuous high amplitude. From early stance phase and mid stance phase, activity had high level but after swing phase. similar to normal. 4. Gastrocnemius, plantar flexor of ankle joint had low level of activity compared to normal and had continuous low amplitude. 5. Tibialis anterior, dorsiflexor of ankle joint had similar muscle activity to normal and had continuous low amplitude.

  • PDF

The Effect of Calf Stiffness on Gait, Foot Pressure and Balance in Adults

  • Lee, JeonHyeong;Chang, JongSung
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.346-350
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effects of calf tightness on gait, plantar pressure, and balance in adults. Methods: A total of 60 participants were divided into a normal group of 30 subjects with normal dorsiflexion angle (20-25 degrees) and an experimental group of 30 subjects with limited dorsiflexion angle (0-15 degrees) due to calf tightness. Gait ability and foot pressure of the subjects was measured with a treadmill, and the balance ability was measured by PROKIN system. Results: A significant difference in COP length, loading response, and single limb support was observed between groups. The COP length and single limb support ratio in the normal group was greater than in the experimental group, but the experimental group showed a higher ratio for loading response in the gait ratio. Conclusion: Our results indicated that calf tightness was negative effects on balance and gait ability, so assessment of the muscle tightness should be considered during exercise and treatment.

Development of a Gait Diagnosis Supporting System using Korean Normal Gait Data (한국 성인의 정상 보행데이터를 이용한 보행진단 지원 시스템의 개발)

  • Kim, Dongjin;Ryu, Taebeum;Kwon, Seman;Choi, Hwa Soon;Chung, Min K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.480-486
    • /
    • 2007
  • A gait diagnosis supporting system is necessary to evaluate the characteristics of abnormal gait of a patient in a systematic and efficient manner. The present study developed a gait diagnosis supporting system which compares abnormal gait of a patient with a reference gait data and presents abnormal gait characteristics in an organized form. Three types of diagnosis modules were developed for the spatio-temporal, kinematic and kinetic gait parameters, and a gait data for Korean normal adults was used for the reference data of the system. The system was applied to evaluate the gait pattern of three arthritis patients and the abnormal gait characteristics of them could be easily identified with a systematic and graphical presentation.