• Title/Summary/Keyword: Nonpoint pollutant

Search Result 219, Processing Time 0.034 seconds

Calibration of HSPF Model from Mangyeong River Watershed (만경강유역에서의 HSPF 모형의 보정)

  • Jung, Jae-Woon;Jang, Jeong-Ryeol;Jung, Ji-Yeon;Choi, Kang-Won;Lim, Byung-Jin;Kim, Sang-Don;Kim, Kap-Soon;Yoon, Kwang-Sik
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.58-67
    • /
    • 2011
  • The HSPF (Hydrological Simulation Program-Fortran) model was applied to Mangyeong river watershed to examine its applicability through calibration using monitoring data. For the model application, digital maps were constructed for watershed boundary, land-use, Digital Elevation Model of Mangyeong river watershed using BASINS (Better Assessment Science for Intergrating point and Nonpoint Sources) program. The observed runoff was 1976.4mm while the simulated runoff was 1913.4mm from 2007 to 2008. The model results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model. In terms of water quality, trends of the observed value were in a good agreement with simulated value despite its model performance lower than expected. However, its reliability and performance were with the expectation considering complexity of the watershed, pollutant sources and land use intermixed in the watershed. Overall, we identified application of HSPF model as reliable evidence by model performance.

  • PDF

Importance of Baseflow Separation and Nonpoint Source Pollutant Loadings through Baseflow for Efficient Watershed Managemen (효율적인 유역관리를 위한 기저유출 분리 및 기저비점의 중요성)

  • Han, Jeong Ho;Kum, Dong Hyuk;Kim, Jonggun;Lim, Kyoun Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.88-88
    • /
    • 2017
  • 유역에서의 효율적인 수량 및 수질 관리를 위해서는 정확한 수문 구성요소에 대한 이해가 선행되어야 한다. 유출 수문곡선을 이용한 많은 연구가 수행되었음에도 불구하고 정확한 기저유출 산정에 관한 연구는 매우 제한적으로 수행되어 왔다. 수문학교과서에 수록된 다양한 기저유출 방법은 실제 장기 유출 수문곡선에 적용하는데 한계가 있으며, 유역의 다양한 유출특성을 반영할 수 없다. 따라서 본 연구에서는 USGS에서 개발한 기저유출 분리 모형와 SWAT BFlow, 그리고 WHAT 시스템에 특성에 대해서 분석하였으며, 이러한 모형을 이용한 기저유출 분석의 한계점을 제시하였다. 정확한 기저유출 분리를 위해서는 유역의 감수곡선 특성을 반영한 기저유출 분리가 이루어져야 하며, 주지하수 감수곡선처럼 유역 대표 감수 특성을 이용하기 보다는 유황이나 계절별 감수특성을 고려한 김수 특성 인자에 대한 연구가 필요하다. 이외에도 유역에서 기저유출로 인한 오염부하 특성을 NO3-N을 중심으로 분석하여 정확한 기저유출 산정의 중요성을 제시하였다. 이와 같이 기저유출과 같은 수문 구성 요소에 대한 정확한 이해 없이는 효율적인 수량 및 수질 관리가 어려울 것으로 판단된다.

  • PDF

Development and Evaluation of Bioretention Treating Stormwater Runoff from a Parking Lot (주차장 비점오염원 관리를 위한 식생체류지 개발 및 평가)

  • Yu, Gigyung;Choi, Jiyeon;Hong, Jungsun;Moon, Soyeon;Kim, Lee Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.221-227
    • /
    • 2015
  • Urbanization increases the impervious cover, which affects the discharge of stormwater runoff and non-point source pollutants to the waterbodies. In order to improve the water quality and restore the aqua-ecosystem, the Ministry of Environment (MOE), Korea MOE introduced the Low Impact Development(LID) techniques on development projects. Therefore, research was performed to develop the bioretention technology for managing the stormwater runoff from urban areas. The test-bed was established on 2013 up to evaluate the performance of pollutant and runoff reduction. A total of 11 storm events have been monitored from November 2013 to present. Even though the SA/CA (surface area of bioretention/catchment area) is approximately 2.2%, the facility shows high pollutant and runoff reduction during storm events by increasing retention and infiltration capacities. The bioretention shows a 100% total runoff reduction at 0mm < R < 10mm rainfall range and more than 90% of runoff reduction at a rainfall range of 10mm < R < 20mm. Due to runoff volume reduction, more than 90% of nonpoint source pollutant were also removed by the bioretention.

Assessment of Permissible Inflow Load for Water Quality Management in Yeoja Bay, Korea (여자만의 수질관리를 위한 허용유입부하량 산정)

  • Kim, Hyung-Chul;Lee, Won-Chan;Kim, Jong-Gu;Hong, Sok-Jin;Kim, Kyoung-Mi;Cho, Yoon-Sik;Park, Sung-Eun;Kim, Jin-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.345-356
    • /
    • 2011
  • Based on the consideration of land based pollutant discharges from the basin and seawater quality related carrying capacity and the seawater quality improvement in receiving water bodies of Yeoja Bay where eutrophication and organic pollution are in progress, were evaluated. The permissible inflow loads of BOD, TN and TP by using the geographical features and box modelling method were estimated. As results, it is shown that the reduction rate of discharged BOD and TP loads were 39.3% and 30.8 %, respectively, however, 6.9% was estimated for TN. According to the pollutant loading in each tributary and generated load of the basin, it is given much weight on the land use group, and also was shown in discharged load estimation. This suggests that it is important to control nonpoint source pollutant such as livestock and land use groups as well as point source to contribute the proposition of the water quality improvement plan according to the characteristics of the bay.

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Cherry Tree Plot - (강우시 비점오염원의 오염부하 특성 - 벚나무 재배지를 대상으로 -)

  • Kang, Mee-A;Choi, Byoung-Woo;Yu, Jae-Jeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 2010
  • This study was carried out to produce the characteristics of pollutant loads caused by a cherry tree plot as a nonpoint sources(NPS) unit in agricultural areas. The relationship between rainfall and runoff didn't show a good coefficient with 0.5. Despite precipitation amount was less than 20 mm, runoff occurred with $0.5\;m^3$ because of high rainfall intensity of 8.8 mm/hr. In contrast, runoff was not occurred when precipitation amount was 47.4 mm in one case. In that case the primal effect on runoff was not precipitation amount. Correlation between load of pollutants such as BOD, COD, TN and TP and runoff' volumes showed significantly positive values which were more than r = 0.92 for all pollutants except SS(r = 0.71). SS could be a proper factor for estimating pollutant loads of BOD, COD, TN and TP because of a high correlation more than r = 0.73 between SS load and pollutant loads of BOD, COD, TN and TP. Both Organics and nutrient pollutants could be reduced if we control SS in runoff. The highest concentration of TN was detected in the event which was affected by fertilization activities directly. Therefore fertilization must be considered as a function of impact parameters on TN load in agricultural areas.

Improvement Measures of Pollutants Unit-Loads Estimation for Paddy Fields (논으로부터 배출되는 영양물질 오염부하량 원단위 산정 방법 개선 방안 검토)

  • Jung, Jae-Woon;Yoon, Kwang-Sik;Choi, Woo-Jung;Choi, Woo-Young;Joo, Seuk-Hun;Lim, Sang-Sun;Kwak, Jin-Hyeob;Lee, Soo-Hyung;Kim, Dong-Ho;Chang, Nam-Ik
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.291-296
    • /
    • 2008
  • Pollutant unit load developed by Ministry of Environment (MOE) in 1995 has been a tool commonly used for water quality management and environmental policy decision. In spite of the convenience of the method in application, the shortcoming of the method has been criticized especially for nonpoint source pollution from paddy field. In this paper the estimation procedures of pollutant unit load from paddy field in the major river basins (Han, Nakdong, Geum, and Youngsan river) were investigated, and some suggestions of improvement measures of the unit-load estimation were made. The investigation showed that the distributions of rainfall, run-off, and run-off ratio, which are the most important factors affecting discharge amount of pollutants, were not similar among river basins. Such differences seemed to result in a greater unit loads estimation at Han river and at Nakdong river watersheds compared to the others. Therefore, it is not likely to be rationale to compare unit load among the watersheds without consideration of such differences. We conclude that estimation of unit-load through an intensive monitoring of pollutant discharge is crucial for better estimation of unit-load. When such an intensive monitoring is not easy due to labor and expense restriction, we suggest that unit-load should be estimated based on the storm-events which is a representative rainfall-runoff event of the area.

Assessment of Water and Pollutant Mass Balance by Soil Amendment on Infiltration Trench (침투도랑 토양치환의 물순환 및 비점오염물질저감 효과 평가)

  • Jeon, Minsu;Choi, Hyeseon;Kang, Heeman;Kim, Lee-hyung
    • Journal of Wetlands Research
    • /
    • v.22 no.2
    • /
    • pp.145-152
    • /
    • 2020
  • Highways are characterized by high non-point pollutant emissions due to high traffic volumes and sections that cause abrupt change in driving speed (i.e. rest stations, ticketing office, etc.). Most highways in Korea were constructed with layers that do not allow adequate infiltration. Moreover, non-point pollution reduction facilities were not commonly installed on domestic highways. This study was conducted to evaluate a facility treating highway runoff and develop a cost-effective design for infiltration facilities by using soil amendment techniques. Performing soil amendment increased the hydraulic retention time (HRT) and infiltration rate in the facility by approximately 30% and 20%, respectively. The facility's efficiency of removing non-point pollutants (Total Suspend Soiled (TSS), Chemical Oxygen Demand(COD), Biological Oxygen Demand(BOD), Total Nitrogen (TN) and Total Phosphorus, (TP) were also increased by 20%. Performing soil amendment on areas with low permeability can increase the infiltration rates by improving the storage volume capacity, HRT, and infiltration area. The application of infiltration facilities on areas with low permeability should comply with the guidelines presented in the Ministry of Environment's Standards for installation of non-point pollution reduction facilities. However, soil amendment may be necessary if the soil infiltration rate is less than 13 mm/hr.

Analysis of water quality improvement efficiency using constructed wetland in a coastal reservoir (연안 담수호 수질오염 방지를 위한 인공습지의 수질정화효율 분석)

  • Hong, Jungsun;Maniquiz-Redillas, Marla C.;Ham, Jong-Hwa;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.292-300
    • /
    • 2016
  • Diverse and comprehensive countermeasures were established to prevent water pollution in coastal areas such as constructed wetlands(CW).This study was conducted to assess the water quality improvement through CW constructed along the shoreline of Hwaseong coastal reservoir. The CW is located in Hwaseong-si, Gyeonggi-do and consisted of a forebay and a wetland. The CW was monitored twice during rainy days and 10 times during dry days. The monitoring results indicated that in and out flowrates were highly correlated with COD and TN loads. COD, TN and TP concentrations in the forebay was lower during dry days than rainy days. However, concentration and mass removal efficiencies of COD, TN and TP were greater during rainy days. In addition, the volume flowing into the CW was less compared to the outflow during rainy days indicating that the CW efficiently reduced the runoff volume. The overall pollutant removal efficiency of the CW were at least 50% for TSS, 20 to 35% for TP, and 26 to 94% for TN. The data gathered may be used to improve the pollutant removal efficiency of the system in the future.

Characteristics of Stormwater Runoff with respect to Pavement Types (도로 포장방법에 따른 비점오염물질 유출특성 비교)

  • Kim, Cheolmin;Choi, Jiyeon;Lee, Jung Min;Cho, Hyejin;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.16 no.3
    • /
    • pp.423-429
    • /
    • 2014
  • Due to high imperviousness rates of the roads, various pollutants originated from vehicle activities and air depositions are accumulated on the road surfaces. The washed-off pollutants can deteriorate the water quality and destroy the aqua-ecosystems with their toxicity. Usually the roads are paved with asphalt and concrete, which can affect on the pollutant concentrations with different frictional forces. Therefore, this research is performed to evaluate the influences of different pavement type on discharged concentrations of pollutant. The results shows the first flush phenomenon was occurred on both pavement types. However, peak concentrations are higher in concrete pavement areas than asphalt pavement because concrete pavement has high contact area with vehicles. The EMCs(Event Mean Concentration) also shows high values in concrete paved roads. As a result of this research, it can be concluded the pavement type is also one of the important affecting factors on pollutant emissions from the roads.

Pollutant Contents with Particle Size Distribution in Bridge Road Drainage Sediment (교량도로 배수받이 퇴적물질의 입경별 오염물질 함량)

  • Lee, Jun-Ho;Cho, Yong-Jin;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1360-1365
    • /
    • 2007
  • The purpose of this study is to present the basic data for nonpoint pollutant loads from bridge road drainage sediments using the results to analyze organic matter and heavy metals from the four bridge drainage sampling sites with sediments of different particle size ranges. The sediment sample was collected from the bridge road drainage and the masses of nine sediments fractions were obtained after drying the separated sediment in an over at $85^{\circ}C:>2,000{\mu}m$, $1,000\sim2,000{\mu}m$, $850\sim1,000{\mu}m$, $425\sim850{\mu}m$, $212\sim425{\mu}m$, $125\sim212{\mu}m$, $90\sim125{\mu}m$, $75\sim90{\mu}m$, $<75{\mu}m$. The sediment extract was analyzed water quality constituents, including chemical oxygen demand(COD), total nitrogen(T-N), total phosphorus(T-P), heavy metals and particle size distribution. The results indicate that most of particle size ranges of the bridge road sediments was $125\sim425{\mu}m$, and portion of $<75{\mu}m$ was low. But most of the pollutants are associated with the finer fractions of the load sediments. As the results of analysis, the range and average values of COD, T-N, T-P, Fe, Cu, Cr, and Pb were $177\sim198.8$ mg/kg(77.6 mg/kg), $23\sim200$ mg/kg(83 mg/kg), T-P $18\sim215$ mg/kg(129 mg/kg), and $1,508\sim5,612$ mg/kg(3,835 mg/kg), $9.2\sim69.3$ mg/kg(49 mg/kg), $19.1\sim662.2$ mg/kg(214 mg/kg), and $28.4\sim251.4$ mg/kg(114 mg/kg), respectively. The relationship between sediment size and pollutants concentration have an inverse proportion. The removal of road sediments with frequently could be reduced the significant nonpoint pollutant load, because of the bridge road sediment contains considerable micro-particles and heavy metals.