• 제목/요약/키워드: Nonpoint pollutant

Search Result 219, Processing Time 0.023 seconds

Management of Nonpoint Sources in Watershed - with reference to Daechong Reservoir in Korea (수계의 비점오염원 관리 - 대청호를 중심으로)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.163-176
    • /
    • 2000
  • The purpose of this study is to analyze the pollutant loads and its distribution, and to suggest the management of nonpoint sources in Daechong Reservoir. The loads from point and nonpoint sources such as population, industry, livestock and land use were calculated per stream or river with topography(1:25,000) of the watershed of Daechong Reservoir. The generating pollutant loads were obtained through multiplication of pollutant sources by generating pollutant quantity per unit pollutant source. The effluent point sources loads is defined as loads from wastewater treatment facilities such as domestic, industrial and livestock wastewater treatment facilities, which were calculated through multiplication of effluent flowrates by water quality constituents concentration. Untreated point sources loads were estimated to be 35 % of total point sources loads. The effluent nonpoint sources pollutant loads were obtained through the multiplication of generating nonpoint sources loads by effluent ratios based on previous studies. The effluent nonpoint sources loads have the ratio of 26.2% of total BOD effluent loadings, 20.1% of total T-N effluent loadings, and 10.5% of total T-P effluent loadings. For the reduction of nonpoint sources loads in Daechong Reservoir, silviculture, artificial wet land, and grassed waterways could be applied. And untreated livestock waste scattered can result in nonpoint loadings, so required the livestock wastes treatment facilities and purifying facilities together with the management of shed, pasture, livestock waste storage site and composting site. Finally, remote sensing and GIS should be applied to the identification of distribution of water quality, watershed, the location and scale of nonpoint sources, effluent process during rainfall, for more detailed analysis of nonpoint sources.

  • PDF

Estimation of Nonpoint Pollutant Loads in the Hwanggujichoen Basin using SWMM (SWMM을 이용한 황구지천유역의 비점원오염부하량 평가)

  • Cho, Jae-Heon;Cho, Nam-Heung
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.349-358
    • /
    • 2003
  • Water pollution of Hwanggujicheon stream is severe because urban area of Suwon City is included in the basin. A countermeasure for water quality prevention of the stream is necessary. In this study, nonpoint pollutant load of BOD, SS, TN and TP are estimated using SWMM. The result indicates that BOD, SS, TN and TP loads during 3 months from July to September are 67.0%, 60.8%, 54.7% and 74.5% of the annual total load, respectively. We can see that most of nonpoint pollutant loads are generated in the rainy season. Annual nonpoint pollutant loads of BOD, SS, TN and TP in the Hwanggujicheon stream are 342 ton, 1,500 ton, 480 ton and 12.6 ton, respectively.

Installation and operation of automatic nonpoint pollutant source measurement system for cost-effective monitoring

  • Jeon, Jechan;Choi, Hyeseon;Shin, Dongseok;Kim, Lee-hyung
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.99-104
    • /
    • 2019
  • In Korea, nonpoint pollutants have a significant effect on rivers' water quality, and they are discharged in very different ways depending on rainfall events. Therefore, preparing an optimal countermeasure against nonpoint pollutants requires much monitoring. The present study was conducted to help prepare a method for installing an automatic nonpoint pollutant measurement system for the cost-effective monitoring of the effect of nonpoint pollutants on rivers. In the present study, monitoring was performed at six sites of a river passing through an urban area with a basin area of $454.3km^2$. The results showed that monitoring could be performed for a relatively long time interval in the upstream and downstream regions, which are mainly comprised of forests, regardless of the rainfall amount. On the contrary, in the urban region, the monitoring had to be performed at a relatively short time interval each time when the rainfall intensity changed. This was because the flow rate was significantly dependent on the rainfall's intensity. The appropriate sites for installing an automatic measurement system were found to be a site before entering the urban region, a site after passing through the urban region, and the end of a river where the effects of nonpoint pollutant sources can be well-decided. The analysis also showed that the monitoring time should be longer for the rainfall events of a higher rainfall class and for the sites closer to the river end. This is because the rainfall runoff has a longer effect on the river. However, the effect of nonpoint pollutant sources was not significantly different between the upstream and the downstream in the cases of rainfall events over 100 mm.

The Comparison of Water Quality of Daecheong-Dam basin According to the Data Sources of Land Cover Map (토지피복도 자료원에 따른 대청댐유역 수질특성 비교)

  • Lee, Geun Sang;Park, Jin Hyeog;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.25-35
    • /
    • 2012
  • This study compared the influence of water quality according to the data sources of spatial information. Firstly, land cover map was constructed through image classification of Daecheong-dam basin and the accuracy of image classification from satellite image showed high as 88.76% in comparison with the large-scaled land cover map in Ministry of Environment, to calculate Event Mean Concentration (EMC) by land cover that impact on the evaluation of nonpoint source pollutant loads. Also curve number and direct runoff were calculated by spatial overlay with soil map and land cover map from image classification. And Seokcheon and Daecheong-Dam basin showed high in the analysis of curve number and direct runoff. Samgacheon-Joint and Sokcheon-Downstream basin showed high in the nonpoint source pollutant loads of BOD from direct runoff and EMC. And Samgacheon-Joint and Bonghwangcheon- Downstream basin showed high in the nonpoint source pollutant loads of TN and TP. Nonpoint source pollutant loads from image classification were compared with those by the land cover map from Ministry of Environment to present the effectivity of nonpoint source pollutant loads from satellite image. And Daecheong-Dam Upstream basin showed high as 10.64%, 11.70% and 20.00% respectively in the errors of nonpoint source pollutant loads of BOD, TN, and TP. Therefore, it is desirable that spatial information including with paddy and dry field is applied to the evaluation of nonpoint source pollutant loads in order to simulate water quality of basin effectively.

A Study on Scale and Characteristics of Nonpoint Pollution Using STORM Model (STORM 모형을 이용한 비점오염원 부하의 규모와 특성에 관한 연구)

  • 김도연;이홍근
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.5-11
    • /
    • 1996
  • The more accurate estimation of the pollutant loadings from nonpoint source is needed to evaluate water quality of water resources such as river and reservoir. Therefore this study was performed to grasp the scale and characteristics of pollutant. In this study, STORM model was applied to I-cheon district to estimate runoff and pollutant loading of SS, BOD, T-N and $PO_4-P$. The results estimated by STORM model were fitted well to surveyed water quality in flow, SS and BOD. The annual loadings were estimated to be 36,463 kg/$km^3$/yr of SS, 8,090 kg/$km^3$/yr of BOD, 4,435 kg/$km^3$/yr of T-N and 358 kg/$km^3$/yr of $PO_4-P$. It was also found that the monthly pollutant loadings of SS, BOD, $PO_4-P$ were greatest in May and T-N in April.

  • PDF

Spatial Analysis of Nonpoint Source Pollutant Loading from the Imha dam Watershed using L-THIA (L-THIA를 이용한 낙동강수계 임하댐유역 비점오염원의 공간적 분포해석)

  • Jeon, Ji-Hong;Cha, Daniel K.;Choi, Donghyuk;Kim, Tae-Dong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.1
    • /
    • pp.17-29
    • /
    • 2013
  • Long-Term Hydrologic Impact Assessment (L-THIA) model which is a distributed watershed model was applied to analyze the spatial distribution of surface runoff and nonpoint source pollutant loading from Imha watershed during 2001~2010. L-THIA CN Calibration Tool linked with SCE-UA was developed to calibrate surface runoff automatically. Calibration (2001~2005) and validation (2006~2010) of monthly surface runoff were represented as 'very good' model performance showing 0.91 for calibration and 0.89 for validation as Nash-Sutcliffe (NS) values. Average annual surface runoff from Imha watershed was 218.4 mm and Banbyun subwatershed was much more than other watersheds due to poor hydrologic condition. Average annual nonpoint source pollutant loading from Imha wateshed were 2,295 ton/year for $BOD_5$, 14,752 ton/year for SS, 358 ton/year for T-N, and 79 ton/year for T-P. Amount of pollutant loading and pollutant loading rates from Banbyun watershed were much higher than other watersheds. As results of analysis of loading rate from grid size ($30m{\times}30m$), most of high 10 % of loading rate were generated from upland. Therefore, major hot spot area to manage nonpoint source pollution in Imha watershed is the combination of upland and Banbyun subwatershed. L-THIA model is easy to use and prepare input file and useful tool to manage nonpoint source pollution at screening level.

Delivered Pollutant Loads of Point and Nonpoint Source on the Upper Watershed of Lake Paldang - Case Study of the Watershed of Namhan River and Gyeongan Stream (팔당호 상류유역의 점·비점오염원 유달부하 특성 - 남한강·경안천 수계를 대상으로)

  • Park, Ji Hyoung;Kong, Dong Soo;Min, Kyung Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.750-757
    • /
    • 2008
  • This study is conducted to characterize and evaluate delivered pollutant loads of point and nonpoint source on the upper watershed of lake paldang. The study area consists of 12 watersheds in Namhan-river and Kyungahcheon, which are approximately 80% of total area of Namhan-river and Kyungahcheon. Based on daily delivered loads from watersheds, 61% of $BOD_5$, 81% of T-N and 70% of T-P were from nonpoint sources, suggesting that delivered loads of nonpoint pollutants be crucial to water quality. On the other hand, 78% of $BOD_5$, 92% of T-N and 87% of T-P as delivered load were from nonpoint sources in an upper watershed of Namhan-river, while 48% of $BOD_5$, 70% of T-N and 57% of T-P as delivered load were from nonpoint sources in a lower watershed of Namhan-river, suggesting higher dependency of point sources than upper watershed of Namhan-river. In the characteristic of delivered loading pollutants from point and nonpoint pollution sources, delivered load of nonpoint pollutants differed significantly by seasonal flow, and as though discharged load of point pollutants were yearly uniform, delivered load of point pollutants was found to be flow-dependent because its delivery ratio was changed.

Regional Characteristics of Nonpoint Source Pollutant Loads in the Upstream Watersheds of Nakdong River (낙동강 상류유역의 지역별 비점오염부하 특성)

  • Choe, Gyeong-Suk;Son, Seong-Ho
    • KCID journal
    • /
    • v.13 no.2
    • /
    • pp.283-292
    • /
    • 2006
  • The characteristics of nonpoint source pollutant loads in upstream of Nakdong River were studied through analysis of pollutant loads of 10 sub-watersheds divided based on administrative district. The discharge and pollutant concentration of each sub-watershed were collected from Nakdong-River Water Research Institute and Daegu Regional Environmental office, respectively. Pollution items analysed in this study were BOD, T-N and T-P. The delivery loads of the nonpoint source pollutions of each sub-watershed were calculated after analysing the concentration of the pollution of each site. Several points were found from the results. Firstly, in general, city areas including Sangju, Andong showed higher degree of nonpoint pollution than country areas including Cheongsong, Yeongyang. The sub-watersheds located upstream side, such as Yeongju, Bonghwa, Necessarily show better water quality than the sub-watersheds located downstream side, such as Mungyeong, Uiseong. This result indicates that a given pollution condition within the watershed can be more sensitive than location factor to the level of water quality. Secondly, the delivery load and area of watershed were not necessarily correlated in the sense of water quality, while the discharge was shown to be highly correlated to the delively load of pollution. Lastly, sewage and waste caused from population and livestock, as well as landuse factor, were found to significantly contribute to the water pollution. Alternative solutions for controlling pollution source, therefore, should be provided to meet target levels of water quality in these regions.

  • PDF

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Analysis of Livestock Nonpoint Source Pollutant Load Ratio for Each Sub-watershed in Sancheong Watershed using HSPF Model (HSPF 모형을 이용한 산청 유역의 소유역별 축산비점오염부하량 비중 분석)

  • Kim, So Rae;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.39-50
    • /
    • 2020
  • The objective of this study was to assess the livestock nonpoint source pollutant impact on water quality in Namgang dam watershed using the HSPF (Hydrological Simulation Program-Fortran) model. The input data for the HSPF model was established using the landcover, digital elevation, and watershed and river maps. In order to apply the pollutant load to the HSPF model, the delivery load of the livestock nonpoint source in the Namgang dam watershed was calculated and used as a point pollutant input data for the HSPF model. The hydrologic and water quality parameters of HSPF model were calibrated and validated using the observed runoff data from 2007 to 2015 at Sancheong station. The R2 (Determination Coefficient), RMSE (Root Mean Square Error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (Relative Mean Absolute Error) were used to evaluate the model performance. The simulation results for annual mean runoff showed that R2 ranged 0.79~0.81, RMSE 1.91~2.73 mm/day, NSE 0.7~0.71 and RMAE 0.37~0.49 mm/day for daily runoff. The simulation results for annual mean BOD for RMSE ranged 0.99~1.13 mg/L and RMAE 0.49~0.55 mg/L, annual mean TN for RMSE ranged 1.65~1.72 mg/L and RMAE 0.55 mg/L, and annual mean TP for RMSE ranged 0.043~0.055 mg/L and RMAE 0.552~0.570 mg/L. As a result of livestock nonpoint pollutant loading simulation for each sub-watersehd using the HSPF model, the BOD ranged 16.6~163 kg/day, TN ranged 27.5~337 kg/day, TP ranged 1.22~14.1 kg/day.