• Title/Summary/Keyword: Nonparametric Estimation

Search Result 211, Processing Time 0.027 seconds

Nonparametric Estimation for Ramp Stress Tests with Stress Bound under Intermittent Inspection (단속적 검사에서 스트레스한계를 가지는 램프스트레스시험을 위한 비모수적 추정)

  • Lee Nak-Young;Ahn Ung-Hwan
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.208-219
    • /
    • 2004
  • This paper considers a nonparametric estimation of lifetime distribution for ramp stress tests with stress bound under intermittent inspection. The test items are inspected only at specified time points an⊂1 so the collected observations are grouped data. Under the cumulative exposure model, two nonparametric estimation methods of estimating the lifetime distribution at use condition stress are proposed for the situation which the time transformation function relating stress to lifetime is a type of the inverse power law. Each of items is initially put on test under ramp stress and then survivors are put on test under constant stress, where all failures in the Inspection interval are assumed to occur at the midi)oint or the endpoint of that interval. Two proposed estimators of quantile from grouped data consisting of the number of items failed in each inspection interval are numerically compared with the maximum likelihood estimator(MLE) based on Weibull distribution.

Nonparametric Test for Money and Income Causality

  • Jeong, Ki-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.485-493
    • /
    • 2004
  • This paper considers the test of money and income causality. Jeong (1991, 2003) developed a nonparametric causality test based on the kernel estimation method. We apply the nonparametric test to USA data of money and income. We also compare the test results with ones of the conventional parametric test.

  • PDF

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

A General Semiparametric Additive Risk Model

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.421-429
    • /
    • 2008
  • We consider a general semiparametric additive risk model that consists of three components. They are parametric, purely and smoothly nonparametric components. In parametric component, time dependent term is known up to proportional constant. In purely nonparametric component, time dependent term is an unknown function, and time dependent term in smoothly nonparametric component is an unknown but smoothly function. As an estimation method of this model, we use the weighted least square estimation by Huffer and McKeague (1991). We provide an illustrative example as well as a simulation study that compares the performance of our method with the ordinary least square method.

  • PDF

Nonparametric Bayesian methods: a gentle introduction and overview

  • MacEachern, Steven N.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.445-466
    • /
    • 2016
  • Nonparametric Bayesian methods have seen rapid and sustained growth over the past 25 years. We present a gentle introduction to the methods, motivating the methods through the twin perspectives of consistency and false consistency. We then step through the various constructions of the Dirichlet process, outline a number of the basic properties of this process and move on to the mixture of Dirichlet processes model, including a quick discussion of the computational methods used to fit the model. We touch on the main philosophies for nonparametric Bayesian data analysis and then reanalyze a famous data set. The reanalysis illustrates the concept of admissibility through a novel perturbation of the problem and data, showing the benefit of shrinkage estimation and the much greater benefit of nonparametric Bayesian modelling. We conclude with a too-brief survey of fancier nonparametric Bayesian methods.

Nonparametric Estimation of Univariate Binary Regression Function

  • Jung, Shin Ae;Kang, Kee-Hoon
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.236-241
    • /
    • 2022
  • We consider methods of estimating a binary regression function using a nonparametric kernel estimation when there is only one covariate. For this, the Nadaraya-Watson estimation method using single and double bandwidths are used. For choosing a proper smoothing amount, the cross-validation and plug-in methods are compared. In the real data analysis for case study, German credit data and heart disease data are used. We examine whether the nonparametric estimation for binary regression function is successful with the smoothing parameter using the above two approaches, and the performance is compared.

Parametric nonparametric methods for estimating extreme value distribution (극단값 분포 추정을 위한 모수적 비모수적 방법)

  • Woo, Seunghyun;Kang, Kee-Hoon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.531-536
    • /
    • 2022
  • This paper compared the performance of the parametric method and the nonparametric method when estimating the distribution for the tail of the distribution with heavy tails. For the parametric method, the generalized extreme value distribution and the generalized Pareto distribution were used, and for the nonparametric method, the kernel density estimation method was applied. For comparison of the two approaches, the results of function estimation by applying the block maximum value model and the threshold excess model using daily fine dust public data for each observatory in Seoul from 2014 to 2018 are shown together. In addition, the area where high concentrations of fine dust will occur was predicted through the return level.

Nonparametric Estimation in Regression Model

  • Han, Sang Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.1
    • /
    • pp.15-27
    • /
    • 2001
  • One proposal is made for constructing nonparametric estimator of slope parameters in a regression model under symmetric error distributions. This estimator is based on the use of idea of Johns for estimating the center of the symmetric distribution together with the idea of regression quantiles and regression trimmed mean. This nonparametric estimator and some other L-estimators are studied by Monte Carlo.

  • PDF

Optimal Designs for Multivariate Nonparametric Kernel Regression with Binary Data

  • Park, Dong-Ryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.243-248
    • /
    • 1995
  • The problem of optimal design for a nonparametric regression with binary data is considered. The aim of the statistical analysis is the estimation of a quantal response surface in two dimensions. Bias, variance and IMSE of kernel estimates are derived. The optimal design density with respect to asymptotic IMSE is constructed.

  • PDF