• Title/Summary/Keyword: Nonlinearity of soil

Search Result 92, Processing Time 0.034 seconds

Analysis and Prediction for Abutment Behavior of Prestressed Concrete Girder Integral Abutment Bridges (프리스트레스트 콘크리트 거더 일체식 교량의 교대 거동 해석과 예측)

  • Kim, Woo-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.667-674
    • /
    • 2011
  • This paper discusses the analysis method of prestressed concrete girder integral abutment bridges for a 75-year bridge life and the development of prediction models for abutment displacements under thermal loading due to annual temperature fluctuation and time-dependent loading. The developed nonlinear numerical modeling methodologies considered soil-structure interaction between supporting piles and surrounding soils and between abutment and backfills. Material nonlinearity was also considered to simulate differential rotation in construction joints between abutment and backwall. Based on the numerical modeling methodologies, a parametric study of 243 analysis cases, considering five parameters: (1) thermal expansion coefficient, (2) bridge length, (3) backfill height, (4) backfill stiffness, and (5) pile soil stiffness, was performed to established prediction models for abutment displacements over a bridge life. The parametric study results revealed that thermal expansion coefficient, bridge length, and pile-soil stiffness significantly influenced the abutment displacement. Bridge length parameter significantly influenced the abutment top displacement at the centroid of the superstructure, which is similar to the free expansion analysis results. Developed prediction model can be used for a preliminary design of integral abutment bridges.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

Analysis of the Structural Behavior of Soldier Pile Type Breakwater (가로널식 일자형 방파제의 구조거동 분석)

  • Han Sang Hun;Park Woo Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • A new type breakwater is developed for small scale harbors and fishing ports with low design wave and soft ground. The structure of the developed breakwater is similar to the soldier pile used in soil excavation. Structural performance of the new type breakwater can not be accurately evaluated by numerical analysis due to nonlinearity of joints between piles and honelasticity of soil support. Therefore, this paper investigates the structural performance of the breakwater with experimental method and compares the results with numerical analysis.

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

Numerical Simulation of Dynamic Soil-pile Interaction for Dry Condition Observed in Centrifuge Test (원심모형실험에서 관측된 건조 지반-말뚝 동적 상호작용의 수치 모델링)

  • Kown, Sun-Yong;Kim, Seok-Jung;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.5-14
    • /
    • 2016
  • Numerical simulation of dynamic soil-pile-structure interaction embedded in a dry sand was carried out. 3D model of the dynamic centrifuge model tests was formulated in a time domain to consider nonlinear behavior of soil using the finite difference method program, FLAC3D. As a modeling methodology, Mohr-Coulomb criteria was adopted as soil constitutive model. Soil nonlinearity was considered by adopting the hysteretic damping model, and an interface model which can simulate separation and slip between soil and pile was adopted. Simplified continuum modeling (Kim et al., 2012) was used as boundary condition to reduce analysis time. Calibration process for numerical modeling results and test results was performed through the parametric study. Verification process was then performed by comparing numerical modeling results with another test results. Based on the calibration and validation procedure, it is identified that proposed modeling method can properly simulate dynamic behavior of soil-pile system in dry condition.

Development & Verification of Frequency-Strain Dependence Curve (주파수-변형률 곡선의 개발 및 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.146-153
    • /
    • 2009
  • One dimensional site response analysis is widely used in prediction of the ground motion that is induced by earthquake. Equivalent linear analysis is the most widely used method due to its simplicity and ease of use. However, the equivalent linear method has been known to be unreliable since it approximates the nonlinear soil behavior within the linear framework. To consider the nonlinearity of the ground at frequency domain, frequency dependent algorithms that can simulate shear strain - frequency dependency have been proposed. In this study, the results of the modified equivalent linear analysis are compared to evaluate the degree of improvement and the applicability of the modified algorithms. Results show the novel smoothed curve that is proposed by this study indicates the most stable prediction and can enhance the accuracy of the prediction.

  • PDF

Simplified Analysis of Three Dimensional Mega Foundations for High-Rise Buildings

  • Jeong, Sangseom;Lee, Jaehwan;Cho, Jaeyeon
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.4
    • /
    • pp.241-247
    • /
    • 2015
  • In this study, an approximate computer-based method was developed to analyze the behavior of raft and piled raft foundations. Special attention is given to the improved analytical method proposed by considering raft flexibility and soil nonlinearity. The overall objective of this study is to focus on the application of a simplified analysis method for predicting the behavior of sub-structures. Through the comparative studies, it is found that the computer programs (YS-MAT and YSPR), developed in this study, is in agreement with the general trends observed by field measurements. Therefore, YS-MAT (Yonsei-Mat) and YSPR (Yonsei Piled Raft) can be effectively used for the preliminary design of a raft or a piled raft foundation for high-rise buildings.

Evaluation of Alternative Approaches for Nonlinear Cross-anisotropic Parameters on the Small Strain Model based on Triaxial Test Results (삼축 시험을 이용한 미소 변형 모델의 비선형 직교 이방 계수에 대한 평가 방법 고찰)

  • Chun, Sung-Ho;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.286-300
    • /
    • 2006
  • Nonlinear cross-anisotropic properties of soil is critical for exact numerical simulation. Theoretically, initial cross-anisotropic properties can be evaluated from triaxial tests with bender element tests, and nonlinear cross-anisotropic properties over initial strain level cannot be evaluated from triaxial tests. In this study, a supposed condition among nonlinear cross-anisotropic properties is suggested to calculate nonlinear cross-anisotropic properties from triaxial tests. Maximum strain and incremental strain energy are applied to combine triaxial test results and theoretical normalized shear modulus curve, respectively Based on combined results, nonlinear cross-anisotropic properties are calculated. Numerical simulation for triaxial tests Is carried out to verify the applicability of the supposed condition with calculated cross-anisotropic properties and simplified nonlinear cross-anisotropic model.

  • PDF

INELASTIC RESPONSE SPECTRA CONSIDERING THE NONLINEARITY OF THE SOFT SOIL DUE TO THE WEAK SEISMIC EXCITATIONS (약진에 의한 연약지반의 비선형성을 고려한 비탄성 응답스펙트럼)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.249-258
    • /
    • 2003
  • 강진을 고려한 지진설계 규준은 약진지역에서는 불필요한 경제적 손실을 가져올 수 있고, 지반-구조물 상호작용을 고려한 성능기준 설계가 합리적인 지진설계를 위해서 중요하다는 것이 인식되었다. 이 연구에서는 연약지반 위에 놓인 단자유도계의 탄성, 비탄성 지진응답 해석을 지반의 비선형성을 고려하여 최대지진가속도를 0.07g와 0.11g로 조정한 11개 중, 약진에 대해 수행하였다. 지진 응답해석은 지반-구조물체계에 대해 유사 3차원 동적해석 프로그램으로 암반에 지진기록을 입력하여 한 단계에 일괄적으로 수행하였다. 연구 결과에 의하면 고정지반이나 선형지반을 가정한 지진응답 스펙트럼은 구조물-지반체계의 실제적인 거동을 보여주지 못하는 것으로 나타났으며, 합리적인 지진설계를 위해서는 지진규준에 정해진 일상적인 설계절차에 따라서 수행하는 것보다 다른 성질을 가진 여러 지반에 대해서 성능기준 지진설계를 수행하는 것이 필요하다. 약진을 받는 연약지반의 비선형성도 입력지진동을 증폭시켜 탄성, 비탄성 지진응답 스펙트럼에 심하게 영향을 미쳤으며, 그 현상은 특히 탄성 응답스펙트럼에서 두드러졌다.

  • PDF

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.