• Title/Summary/Keyword: Nonlinear roll

Search Result 115, Processing Time 0.026 seconds

Multi-level approach for parametric roll analysis

  • Kim, Tae-Young;Kim, Yong-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.53-64
    • /
    • 2011
  • The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude-Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

Time Domain Analysis of Roll Response Considering Slowly Varying Nonlinear Excitation

  • Kim, Deok-Hun;Choi, Yoon-Rak
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-85
    • /
    • 2016
  • Nonlinear wave loads can lead to resonant responses of offshore structures in sum or difference frequencies. In this study, the roll motion of an FPSO with a low natural frequency is simulated in the time domain. To generate the time signals of wave loads, the quadratic transfer functions of the second-order excitations are calculated in the frequency domain. The equations of motions based on the time memory functions are used to evaluate the roll responses in irregular waves. The roll damping in empirical form is accounted for in the simulation.

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 해석)

  • Choi, Yoon-Rak;Kim, Jin-Ha;Kim, Young-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

A nonlinear PID control of winding tension using contact roll (접압롤을 이용한 권취장력의 비선형 PID 제어)

  • Shin, K.H;Kim, K.T;Cheon, S.M
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.12
    • /
    • pp.2029-2037
    • /
    • 1997
  • In a web winding process, the contact roll plays many important roles including air-entrainment control and WIT(Wound In Tension) regulation. The behavior of contact roll significantly affects the winding tension characteristics specifically at the time of contact when the speeds of contact roll and the winding roll are not synchronized. A mathematical model for the web, the winding roll, and the contact roll is derived. By using the model derived, a nonlinear PID(NPID) controller is designed to control the winding tension at the time of contact and separation between the contact roll and the winding roll. Computer simulation study showed that the performance of the winding system with the NPID controller significantly improved compared with that of a system with PID controller.

Study on Volterra System for Variation of Metacentric Height in Waves and its Application to Analysis of Parametric Roll (볼테라 시스템을 이용한 파랑 중 파라메트릭 횡동요에 대한 연구)

  • Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.3
    • /
    • pp.227-241
    • /
    • 2017
  • In this study, a Volterra system for the variations of metacentric height (GM) in waves is employed to simulate the parametric roll phenomena of ships in head sea condition. Using the present Volterra system, the transfer function of each harmonic component in the GM variation is computed for different ship models, including mathematical models and a real containership, and the results are validated through the comparison with the values obtained using the direct calculations based on a weakly nonlinear time-domain method. Then, a semi-analytic approach employing a 1-degree of freedom equation for roll motion is developed to simulate the parametric roll motions in irregular waves. In the derived approach, the nonlinear and time-varying restoring forces in the waves are approximated using the Volterra system. Through simulations of the parametric roll for different sea states, the effects of the 1st and 2nd-order harmonic components of the variations in the occurrence and amplitude of the parametric roll motions are investigated. Because of the strong nonlinearities in the phenomena, a stochastic analysis is conducted to examine the statistical properties of the roll motions in consideration of the sensitivities and uncertainties in the computations.

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 연구)

  • CHOI YOON-RAK;KIM JIN-HA;SONG MYUNG-JAE;KIM YOUNG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.183-187
    • /
    • 2004
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The squall section of FPSO causes a fair amount of viscous damping effect. Free roll decoy tests were conducted to estimate nonlinear roll damping for a barge-typ FPSO of three different loading conditions. The roll motion RAO was deduced by model tests in the wave condition of wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping using the results of free roll decay test. Tested roll performance in JONSWAP wave spectrum was compared with numerical results. These two results show good agreement, in spite of proximity in peak wave period and roll natural period.

  • PDF

Non-linear PID Tension Control in a Winding Process with a Contact Roll and a Nip Roll (접압롤 및 보조닙롤이 있는 권취공정에서의 장력의 비선형 PID제어)

  • 신기현;김규태;천성민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.45-52
    • /
    • 1998
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roll by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analysed. Ana, the behavior of the contact and the nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in controlling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Non-linear tension control in a winding process with a contact roll and a nip roll (접압롤 및 보조롤이 있는 권취공정에서의 장력의 비선형 제어)

  • 신기현;김규태;천성민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.748-753
    • /
    • 1996
  • The contact roll is often used to regulate the winding tension as well as the entrained air in a wound roli by adjusting the contact force to the winding roll. But the contact force generated by other rolls, like assistant nip rolls, in a winding(or roll changing) process may act as disturbance to the control of the winding tension. In this paper, the mechanism of a roll change process is analyzed. And, the behavior of the contact and the assistant nip rolls are mathematically modeled. A nonlinear PID(NPID) controller is designed to control the winding tension and to reject the effect of disturbance generated by the assistant nip roll on the winding tension variation. Computer simulation study showed that the performance of the suggested NPID controller is improved compared with that of the PID controller in con trolling the winding tension and in rejecting the effect of the disturbance.

  • PDF

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

The Influence on the Bar Straightness and Plastic Deformation the Roll Intersection Angle of a Two Roll Straightene (2roll 교정기의 교차각이 봉의 직진도와 소성변형에 미치는 영향)

  • Kim, Yong;Lee, Seong-Wook;Han, Dong-Seop;Han, Geun-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-80
    • /
    • 2007
  • Two roll straightener showed the remarkable improvement in straightness betterment of the bar compared with other types of straightener. So, in this study we designed a two-cross straightener curvature for the straightness improvement of a bar and contact sections with respect to the variation of the gap between two-cross roll using nonlinear contact analysis. The Displacement in terms of a intersection angle between roll and bar was predicted on with the effect of a straightness and plastic deformation behaviors of the bar according to the roll drive of a two cross-roll straightener.

  • PDF