• Title/Summary/Keyword: Nonlinear optimal design

Search Result 595, Processing Time 0.026 seconds

Truck Backer - Upper Control Using Optimal Fuzzy Control (최적 퍼지 제어기를 이용한 트럭의 역-주행 제어)

  • Choi, Yong-Gil;Bae, Yong-Chul;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2666-2668
    • /
    • 2001
  • Fuzzy system which are based on membership functions and rules, can control nonlinear, uncertian, complex system well. However, Fuzzy controller has problems: It is difficult to design a stable for amateur. To update the then-part membership functions of the fuzzy controller can be designed using the Optimal fuzzy controller. Then we could be optimized the system choosing a good performance index. The proposed fuzzy controller based on Optimal fuzzy control is an Truck-Backer for demonstration of the robustness of proposed methodology.

  • PDF

Automated Control Gain Determination Using PSO/SQP Algorithm (PSO/SQP를 이용한 제어기 이득 자동 추출)

  • Lee, Jang-Ho;Ryu, Hyeok;Min, Byoung-Moom
    • Aerospace Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.61-67
    • /
    • 2008
  • To design flight control law of an unmanned aerial vehicle, automated control gain determination program was developed. The procedure for determination of control gain was formulated as the control gains were designed from the optimal solutions of the optimization problem. PSO algorithm, which is one of the evolutionary computation method, and SQP algorithm, which is one of the nonlinear programming method, are used as optimization problem solver. Thru this technique, computation time required for finding the optimal solution is decreased to 1/5 of that of PSO algorithm and more accurate optimal solution is obtained.

  • PDF

OPTIMIZATION TECHNIQUE FOR HIGH QUALITY RECTIFIERS

  • Youssef, Hosam K.;Ismail, Esam H.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.235-240
    • /
    • 1998
  • A procedure for the optimal design of high quality rectifiers is introduced in this paper. The procedure is capable of producing different optimal designs for the same rectifier based on the objective performance required from that rectifier. A FORTRAN-based computer system designed to solve large-scale optimization problems was used in this work to obtain the optimal designs. The optimization program uses Wolfe algorithm in conjunction with a quasi-Newton algorithm as well as a projected augmented Lagrangian algorithm to solve the highly nonlinear optimization problem. The paper also introduces a detailed analysis and an application of the procedure on a boost-type zero-current switch (ZCS) single-switch three-phase rectifier introduced recently in the literature. The obtained results are compared with popular simulation packages (i. e. PSPICE and SIMCAD) to support the validity of the proposed concept.

  • PDF

GWO-based fuzzy modeling for nonlinear composite systems

  • ZY Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.513-521
    • /
    • 2023
  • The goal of this work is to create a new and improved GWO (Grey Wolf Optimizer), the so-called Robot GWO (RGWO), for dynamic and static target tracking involving multiple robots in unknown environmental conditions. From applying ourselves with the Gray Wolf Optimization Algorithm (GWO) and how it works, as the name suggests, it is a nature-inspired metaheuristic based on the behavior of wolf packs. Like other nature-inspired metaheuristics such as genetic algorithms and firefly algorithms, we explore the search space to find the optimal solution. The results also show that the improved optimal control method can provide superior power characteristics even when operating conditions and design parameters are changed.

Optimum Design of Welded Plate Girder Bridges by Genetic Algorithm (유전자 알고리즘에 의한 용접형 판형교의 단면 최적설계)

  • Lee Hee Up;Lee Jun S.;Bang Choon seok
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.510-515
    • /
    • 2003
  • The main objective of this paper is to propose the optimal design method of welded plate girder bridges using genetic algorithm. The objective function considered is the total weight of the welded plate girder. The behavior and design constraints are formulated based on the Korean Railroad Bridge Design Code and DIC Code. Continuous design variables are used to define the cross-sectional dimensions of the member. The GAs (genetic algorithm) is used to solve the nonlinear programming problem. Several examples of minimum weight design are solved to illustrate the applicability of the proposed minimization algorithm. From the results of application examples, the optimum design of welded plate girder is successfully accomplished. Therefore, the proposed algorithm in this paper may be used efficiently and generally for the optimum design of welded plate girders.

  • PDF

Integrated Design of Servomechanisms Using a Disturbance Observer (외란관측기를 이용한 서로계의 통합설계)

  • Kim Min-Seok;Chung Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.4 s.235
    • /
    • pp.591-599
    • /
    • 2005
  • This paper proposes a systematic design methodology for high-speed/high-precision servomechanisms by using a disturbance observer. A multiplicative uncertainty model and a two degree-of-freedom controller composed of a disturbance observer (DOB) and a PD controller are considered as subsystems. Analysis of the system performance, such as internal stability and bandwidth of a servomechanism according to subsystem parameters is conducted for better understanding of the dynamic behavior and interactions among the subsystem parameters. Then, an integrated design methodology, where the interactions are considered simultaneously, is applied to design processes of the servomechanism. The tradeoff relationship between disturbance suppression and measurement noise rejection of the DOB is considered through the design process. Numerical case studies show the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism. Moreover, the disturbance observer designed based on the proposed design methodology yields excellent disturbance suppression performance.

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

Performance Improvement of 24X40 Gbps NRZ Channels in WDM System with 1,000 km NZ-DSF using Optimal Parameters of Optical Phase Conjugator

  • Lee, Seong-Real;Chung, Jae-Pil
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the new method alternating with the method for forming the symmetrical distribution of power and local dispersion in high bit-rate WDM system with optical phase conjugator (OPC) is proposed. The proposed method is carried by finding out the optimal values of OPC position offset and fiber dispersion offset. It is assumed to be that NRZ-formatted 24-channels of 40 Gbps are simultaneously propagated in WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km. It is confirmed that the compensation extents of overall WDM channels are more improved by applying the induced optimal values into WDM system than those in WDM system with the conventional mid-span spectral inversion (MSSI) technique, and the searching procedure of the optimal values makes little difference of performance if the optimal value of one parameter related with another parameter. And, it is confirmed that the flexible design of WDM system with OPC is possible by effectiviely using by these optimal values. Thus, it is expected that the proposed method alternate with the forming method of the symmetrical distributions of power and local dispersion.

Modelling of a Shipboard Stabilized Satellite Antenna System Using an Optimal Neural Network Structure (최적 구조 신경 회로망을 이용한 선박용 안정화 위성 안테나 시스템의 모델링)

  • Kim, Min-Jung;Hwang, Seung-Wook
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.435-441
    • /
    • 2004
  • This paper deals with modelling and identification of a shipboard stabilized satellite antenna system using the optimal neural network structure. It is difficult for shipboard satellite antenna system to control and identification because of their approximating ability of nonlinear function So it is important to design the neural network with optimal structure for minimum error and fast response time. In this paper, a neural network structure using genetic algorithm is optimized And genetic algorithm is also used for identifying a shipboard satellite antenna system It is noticed that the optimal neural network structure actually describes the real movement of ship well. Through practical test, the optimal neural network structure is shown to be effective for modelling the shipboard satellite antenna system.