• Title/Summary/Keyword: Nonlinear optical coefficient

Search Result 79, Processing Time 0.025 seconds

Dynamic Analysis of an Optical Disk Drive with an Automatic Ball Balancer (자동볼평형장치가 부착된 광디스크 드라이브의 동특성해석)

  • 김강성;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.983-988
    • /
    • 2001
  • Dynamic behaviors and stability of an optical disk drive coupled with an automatic ball balancer(ABB) are analyzed by a theoretical approach. The feeding system is modeled a rigid body with six degree-of-freedom. Using Lagrange's equation, we derive the nonlinear equations of motion for a non-autonomous system with respect to the rectangular coordinate. To investigate the dynamic stability of the system in the neighborhood of the equilibrium positions, the monodromy matrix technique is applied to the perturbed equations. On the other hand, time responses are computed by the Runge-Kutta method. We also investigate the effects of the damping coefficient and the position of ABB on the dynamic behaviors of the system.

  • PDF

Suppression of Stimulated Brillouin Scattering in Optical Fiber using Sampled-Fiber Brags Grating (샘플링 광섬유 Bragg 격자를 이용한 광섬유 내의 유도 Brillouin 산란 억제)

  • Lee, Ho-Joon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.485-489
    • /
    • 2005
  • I have investigated a scheme for suppressing stimulated Brillouin scattering in optical fibers. The scheme makes use of a sampled Bragg grating fabricated within the fiber used for transmitting intense Q-switched pulses. The grating is designed such that the spectrum of the Stokes pulse generated through stimulated Brillouin scattering falls entirely within its stop band. I show numerically that the number of sampled fiber Bragg gratings in 1 m is applied directly to suppressing stimulated Brillouin scattering rather than the coupling coefficient. This prevents the build up of the backward-propagating Stokes wave and mitigates the deleterious effects of stimulated Brillouin scattering. The simulation shows that 15 ns pulses with 1 kW peak power can be transmitted though a 1 m-long fiber with little energy loss using this scheme.

Measurement of Thermal Diffusivity and the Optical Properties of a Carbon Nanotube Dispersion by Using the Thermal Lens Effect (열렌즈 효과를 이용한 탄소 나노 튜브 분산액의 열확산도와 광학적 특성 측정)

  • Park, Hyunwoo;Kim, Hyunki;Kim, Sok Won;Lee, Joohyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1167-1172
    • /
    • 2018
  • Carbon nanotubes (CNTs) are structures of carbon atoms bonded together in hexagonal honeycomb shapes, with multi-walled CNTs having a very high thermal conductivity of $3000W/m{\cdot}K$ and single-walled CNTs having a conductivity of $6000W/m{\cdot}K$. In this work, the transmittance and the thermal diffusivity of a multi-walled carbon nanotube dispersion with a concentration of 1.5 M were measured using a single beam method, a dual beam method, and the thermal lens effect. The nonlinear optical coefficients were obtained by using the z-scan method, which moved the sample in the direction of propagation of the single laser beam, propagation and the thermal diffusivity was measured using a double laser beam. As a pump beam, a diode-pumped solid state (DPSS) laser with a wavelength of 532 nm and an intensity of 100 mW was used. As the probe beam, a He-Ne laser having a wavelength of 633 nm and an intensity of 5 mW was used. The experimental result shows that when the concentrations of the sample were 9.99, 11.10, 16.65, and 19.98 mM, the nonlinear absorption coefficients were 0.046, 0.051, 0.136 and 0.169 m/W, respectively. Also, the nonlinear refractive indices were 0.20, 0.51, 1.25 and $1.32{\times}10^{-11}m^2/W$, respectively, and the average thermal diffusivity was $1.33{\times}10^{-6}m^2/s$.

Role of modifiers on the structural, mechanical, optical and radiation protection attributes of Eu3+ incorporated multi constituent glasses

  • Poojha, M.K. Komal;Marimuthu, K.;Teresa, P. Evangelin;Almousa, Nouf;Sayyed, M.I.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3841-3848
    • /
    • 2022
  • The effect of modifiers on the optical features and radiation defying ability of the Eu3+ ions doped multi constituent glasses was examined. XRD has established the amorphous nature of the specimen. The presence of various functional/fundamental groups in the present glasses was analyzed through FTIR spectra. The physical, structural and elastic traits of the glasses were explored. The variation in the structural compactness of the glass structure according to the incorporated modifier was enlightened to describe their suitability for a better shielding media. For the examined glasses, the metallization criterion value varied in the range 0.613-0.692, indicating the non-metallic character of the glasses with possible nonlinear optical applications. The computed elastic moduli expose the Li-containing glass (BTLi:Eu) to be tightly packed and rigid, which is a requirement for a better shielding channel. Furthermore, the optical bandgap and the Urbach energy values are calculated based on the optical absorption spectra. The evaluated bonding parameters revealed the nature of the fabricated glasses covalent. In addition, we investigated the radiation attenuation attributes of the prepared Eu3+ ions doped multi constituent glasses using Phy-X software. We determined the linear attenuation coefficient (LAC) and reported the influence of the five oxides Li2O3, CaO, BaO, SrO, and ZnO on the LAC values. The LAC varied between 0.433 and 0.549 cm-1 at 0.284 MeV. The 39B2O3-25TeO2-15Li2O3-10Na2O-10K2O-1Eu2O3 glass has a much smaller LAC than the other glasses.

Synthesis and Properties of Novel Y-type Nonlinear Optical Polyester Containing Dioxynitroazobenzene Group with Enhanced Thermal Stability of Dipole Alignment

  • Kim, Mi-Sung;Cho, You-Jin;Song, Mi-Young;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3361-3366
    • /
    • 2011
  • New Y-type polyester (3) containing nitrophenylazoresorcinoxy groups as NLO chromophores, which are components of the polymer backbone, was prepared and characterized. Polyester 3 is soluble in common organic solvents such as N,N-dimethylformamide and acetone. It shows a thermal stability up to $240^{\circ}C$ in thermogravimetric analysis with glass-transition temperature ($T_g$) obtained from differential scanning calorimetry near $116^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer film at the 1064 nm fundamental wavelength is around $4.63{\times}10^{-9}$ esu. The dipole alignment exhibits a thermal stability even at $4^{\circ}C$ higher than $T_g$, and there is no SHG decay below $120^{\circ}C$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Synthesis of Novel Y-type Nonlinear Optical Polyester with Enhanced Thermal Stability of Second Harmonic Generation for Electro-Optic Applications

  • Cho, You-Jin;Lee, Ju-Suk;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1509-1514
    • /
    • 2010
  • Methyl 3,4-di-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared and condensed with terephthaloyl chloride to yield novel Y-type polyester (4) containing 3,4-dioxybenzylidenecyanoacetate groups as NLO-chromophores, which constituted parts of the polymer main chains. The resulting polymer 4 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymer 4 shows thermal stability up to $280^{\circ}C$ in thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry near $105^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at the 1064 nm fundamental wavelength is around 2.42 pm/V. The dipole alignment exhibits high thermal stability up to near $T_g$, and there is no SHG decay below $100^{\circ}C$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Preparation and Properties of A Novel Y-type Nonlinear Optical Polyester with Dioxybenzylidenecyanoacetate Groups

  • Lee, Ga-Young;Won, Dong-Seon;Jang, Han-Na;No, Hyo-Jin;Lee, Ju-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1080-1084
    • /
    • 2009
  • Methyl 2,4-di-(2'-hydroxyethoxy)benzylidenecyanoacetate (3) was prepared and polymerized with terephthaloyl chloride to yield a novel Y-type polyester 4 containing 2,4-dioxybenzylidenecyanoacetate groups as NLOchromophores, which constituted parts of the polymer backbone. The resulting polymer 4 is soluble in common organic solvents such as acetone and N,N-dimethylformamide. Polymer 4 showed thermal stability up to 280 ${^{\circ}C}$ in thermogravimetric analysis with glass-transition temperature obtained from differential scanning calorimetry near 108 ${^{\circ}C}$. The second harmonic generation (SHG) coefficient ($d_{33}$) of poled polymer films at the 1064 nm fundamental wavelength was around $3.54\;{\time}\;10^{-9}$ esu. The dipole alignment exhibited a thermal stability up to near $T_g$ and no significant SHG decay was observed below 100 ${^{\circ}C}$ due to the partial main-chain character of polymer structure, which is acceptable for NLO device applications.

Second-Order Nonlinear Optical Properties of Organically Modified Titania Thin Film (유기염료가 복합화된 타이타니아 박막재료의 이차비선형광학특성에 관한 연구)

  • Im, Seon-Jin;Gwak, Hyeon-Tae;Choe, Dong-Hun;Park, Su-Yeong;Kim, Nak-Jung
    • Korean Journal of Materials Research
    • /
    • v.4 no.4
    • /
    • pp.466-471
    • /
    • 1994
  • The polymeric titania sol was prepared via partial hydrolysis of titanium isopropoxide and its characteristics were investigated. The effect of solvent, catalyst and water content on the sol stability was investigated. The shear viscosities of sol solution at different temperatures were measured to determine the gel time. Employing the spin coating technique, optically clear and transparent titanium oxide thin film was fabricated. Even after doped with second-order nonlinear optical(NL0) active monomers, the film quality was maintained very homogeneous. The film was corona-poled under 3~ 5kV at 50~$100^{\circ}C$ range. The electro-optic coefficient, $r_{33}$ was measured to be 1.5~5pm/V using the wavelength, 632.8nm from He-Ne laser.

  • PDF

Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon;Jun, Woong-Gi;Oh, Kwang-Yong;Yoon, Han-Na;Kim, Jae-Hong
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.250-255
    • /
    • 2003
  • We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.

Novel Y-Type Polyimide with Highly Enhanced Thermal Stability of Second Harmonic Generation

  • Lee, Ju-Yeon;Kim, Jin-Hyang;Rhee, Bum-Ku
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.234-237
    • /
    • 2007
  • 3,4-Bis-(3,4-dicarboxyphenylcarboxyethoxy)-4'-nitrostilbene dianhydride was prepared and reacted with 4,4'-(hexafluoroisopropylidene)dianiline to yield a novel Y-type polyimide containing the 3,4-dioxynitrostilbenyl group as an NLO-chromophore, which constituted part of the polymer backbone. The resulting polyimide was soluble in polar solvents such as acetone and N,N-dimethylformamide. The polymer exhibited good thermal stability up to $370^{\circ}C$ in the thermogravimetric analysis. The glass-transition temperature ($T_g$) obtained from the differential scanning calorimetry thermogram was near to $153^{\circ}C$. The second harmonic generation (SHG) coefficient ($d_{33}$) of the poled polymer film at the fundamental wavelength of $1064\;cm^{-1}$ was around $2.15\;{\times}\;10^{-8}\;esu$ (9.01 pm/V). The dipole alignment exhibited exceptionally high thermal stability even at a temperature $30^{\circ}C$ above the $T_g$, and there was no SHG decay below $180^{\circ}C$ because of the partial main chain character of the polymer structure.