Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Jun, Woong-Gi (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Oh, Kwang-Yong (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Yoon, Han-Na (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Jae-Hong (College of Environment and Applied Chemistry, Institute of Natural Sciences, Kyung Hee University)
  • Published : 2003.08.31

Abstract

We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.

Keywords

References

  1. B. L. Volodin, R. Sandalphon, K. Meerholz, B. Kippelen, N. V. Kukhtarev, and N. Peyghaambarian, Opt. Eng., 34. 2213 (1995)
  2. C. J. Chang, W. T. Whang. C. C. Hsu, Z. Y. Ding. K. Y. Hsu, and S. H. Lin. Macromolecules, 32, 5637 (1999)
  3. S. J. Strutz and L. M. Hayden, Appl. Phys. Lett., 74. 2749 (1999)
  4. A. Goonesekera, D. Wright. and W. E. Moerner, Appl. Phys. Lett., 76, 3358 (2000)
  5. D. V. Steenwinckel, C. Engels. E. Gubbelmans, E. Hendrickx, C. Samyn, and A. Persoons, Macromolecules, 33, 4074 (2000)
  6. H. Moon, J. Hwang. N. Kim, and S. Y. Park, Macromolecules. 33, 5116 (2000)
  7. K. Okamoto, T. Nomura, S. H. Park, K. Ogino, and H. Sato, Chem. Mater, 11, 3279 (1999)
  8. M. S. Ho, C. Barrett, J. Paterson, M. Esteghamatian, A. Natansohn, and P. Rochon, Macromolecules, 29, 4613 (1996)
  9. Z. Peng, A. R. Gharavi, and L. Yu. J. Am. Chem. Soc., 119, 4622 (1997)
  10. J. Sohn, J. Hwang, S. Y. Park. J. K. Lee. J. H. Lee. J. S. Chang, G. J. Lee, B. Zhang. and Q. Gong, Appl. Phys. Lett., 77, 1422 (2000)
  11. B. Darracq, F. Chaput, K. Lahlil. J. P. Boilot, Y. Levy, V. Alain, L. Ventelon, and M. B. Desce, Optical Maier, 9, 265 (1998)
  12. G. H Hsiue, W. J. Kuo. C. H. Lin. and R. J. Jeng, Macromol. Chem. Phys., 17, 2336 (2000)
  13. B. Darracq, M. Canva, F. Chaput. J. P. Boilot, D. Riehl. Y. Levy, and A. Brun, AppI. Phys. Lett., 70. 292 (1997)
  14. D. H. Choi, H. T. Hong. W. G. Jun. and K. Y. Oh, Opt. Mater, 21, 373 (2002)
  15. H. Kogelnik, Bell. Syst. Tech. J., 48, 2909 (1969)
  16. H. Ono, T. Kawamura, N. M. Frias, K. Kitamura, N. Kawatsuki, H. Norisada, and T. Yamamoto, J. Appl. Phys., 88, 3853 (2000)
  17. Y. Cui, B. Swedek, N. Cheng, J. Zieba, and P. N. Prasad, J. Appl. Phys., 85, 38 (1999)
  18. S. M. Silence, R. J. Twieg, G. C. Bjorklund, and W. E. Moerner, Phys. Rev. Lett., 73, 2047 (1994)
  19. B. E. Jones. S. Ducharme, M. Liphardt, A. Goonesekera, J. M. Takacs, L. Zhang, and R. Athlaye, J. Opt. Soc. Am. B., 11, 1064 (1994)
  20. S. M. Silence, J. C. Scott, J. J. Stankus, W. E. Moerner, C. R. Moylan, G. C. Bjorklund, and R. J. Tweig, J. Phys. Chem., 99, 4096 (1995)