• Title/Summary/Keyword: Nonlinear optical coefficient

Search Result 79, Processing Time 0.029 seconds

Synthesis and Characterization of Push-pull Polymers Containing Diphenylsiliane Moiety in the Main Chain

  • Yoon, Kuk-Ro;So, bong-Guen;Lee, Soo-Min
    • Journal of Photoscience
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2005
  • We have synthesized an azobenzene-containing polymer (PEA) and a stilbene-containing polymer (PAS) with second-order nonlinear properties. The second harmonic coefficient ($d_{33}$) of the poled polymer films was 84 and 36 pm/V for of PEA and PAS, respectively. The poled state of these polymers was stable at least up to 30 h at room temperature. $T_g$ of these polymers appeared in the range from 120 to $160^{\circ}C$ and onset of initial weight losses in the range from 260 to $270^{\circ}C$. Silicon moieties in the main chain enhanced the solubility of PEA and PAS in common organic solvents such as chloroform, N-methylpyrrolidinone (NMP), N, N-dimethylformamide (DMF), etc.

  • PDF

Optimal Position of Optical Phase Conjugator for Compensation of Distorted WDM Signals with Initial Frequency Chirp

  • Lee Seong-Real;Choi Byung-Ha;Chung Myung-Rae
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.36-42
    • /
    • 2005
  • In this paper, the optimal position of optical phase conjugator(OPC) excellently compensating distorted WDM channels with initial frequency chirp due to both chromatic dispersion and self phase modulation(SPM) is numerically investigated. Highly-nonlinear dispersion shifted fiber(HNL-DSF) is used as a nonlinear medium of OPC in order to widely compensate WDM signal band. It is confirmed that if the OPC position was shifted from mid-way of total transmission length dependence on the initial frequency chirp as well as modulation format and fiber dispersion coefficient, it is possible to cancel the performance degradation owing to the initial frequency chirp. Using proposed configuration, it is possible to remove all in-line dispersion compensator, reducing span losses and system costs in the long-haul broadband WDM systems.

Self-Crosslinkable Side-Chain Copolymer for Nonlinear Optical Application

  • 한관수;박승구;심상연;장웅상;김낙중
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1165-1168
    • /
    • 1998
  • 2-Tetrahydropyranyl methacrylate with a self-crosslinkable moiety was copolymerized with methyl methacrylate and 4-[(2-methacryloxyethyl)methylamino]-4'-nitrostilbene or 4-[(2-methacryloxyethyl)ethylamino]-4'nitroazobenzene to provide second-order nonlinear optical property. Glass transition temperatures (Tg of the copolymers are around 140 ℃. The copolymers were soluble in common organic solvents such as tetrahydrofuran (THF), cyclohexanone, and N,N-dimethylformamide (DMF). Poling was carried out at 140 ℃ for 20 min and identified with UV-Vis spectroscopy. Electro-optic coefficient (r33) of copolymer was 62 pm/V for polymer 2 at 633 nm, and relaxation did not remarkably occur due to the formation of a crosslinked network at 200 ℃ for 15 min.

Thermally Crosslinkable Second-Order Nonlinear Optical Polymer Using Pentaerythritol tetrakis(2-mercaptoacetate) as Crosslinker

  • 한관수;심상연;이용석;장웅상;김낙중
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1168-1171
    • /
    • 1998
  • Two kinds of second-order nonlinear optical copolymers were prepared by the copolymerization of the vinyl monomers containing NLO chromophore, methacrylic acid, and methyl methacrylate or butyl methacrylate. Glass transition temperatures (Tg of copolymers were around 130 ℃. The copolymers were soluble in common organic solvents such as tetrahydrofuran (THF), cyclohexanone, and N,N-dimethylformamide (DMF). The crosslinked copolymer was obtained by thermal treatment using pentaerythritol tetrakis(2-mercaptoacetate) as a crosslinker and became insoluble in tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). Poling was carried out at 120 ℃ for 20 min and identified with UV-Vis spectroscopy. Electro-optic coefficient (r33) measurement showed a value of 35 pm/V for polymer 2 at 633 nm. Temporal stability of copolymers was improved owing to the crosslinked network, which was successfully obtained at 170 ℃ for 30 min after poling.

Thermal and temporal stabilities of a electro-optic coefficient $\gamma_{33}$ in a PI-SOT nonlinear polymer thin film (고분자 박막인 PI-SOT의 전기광학계수 $\gamma_{33}$의 열적 . 시간적 안정성)

  • Jeong, Youn-Hong;Jo, Jae-Heung;Chang, Soo;Kim, Tae;lee, Kwang-Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.3
    • /
    • pp.188-194
    • /
    • 1999
  • We synthesized the nonlinear optical (NLO) PI-SOT(polyimide system, 4-[N,N-bis(hydroxyethyl)amino-4,-($\beta$-cyano-$\beta$-methylsulfonyl)vinyl]azobenzene) polymer with high electro-optic coefficients as well as good thermal and temporal stabilities of the elector-optic coefficient ${\gamma}_33$ by the simple Mitsunobu reaction. By using the simple reflection method of C. C. Teng, we measured the thermal and temporal stabilities of the electro-optic coefficient ${\gamma}_33$ of corona-poled PI-SOT polymer at the wavelength of 632.8 nm and 852 nm, respectively. At the temperature of $20^{\circ}C$, the electro-optic coefficient ${\gamma}_33$ of corona-poled PI-SOT polymer were 25.12 pm/V at the wavelength of 632.8 nm and 5.40 pm/V at the wavelength of 852 nm. These values were highly stabilized for more than 60 days at 2$0^{\circ}C$ and stabilized within 6% for more than 10 hours at $100^{\circ}C$.

  • PDF

Characteristics of Compensation for WDM Transmission with Equally Spaced Channels using Mid-Span Spectral Inversion (채널 간격이 일정한 WDM 전송에서의 Mid-Span Spectral Inversion을 이용한 보상 특성)

  • 이성렬;임황빈
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.619-626
    • /
    • 2004
  • In this paper, we investigated the compensation characteristics of distorted 16-channel WDM signal due to chromatic dispersion self phase modulation(SPM) and four-wave mixing(FWM). The bit rate and uniform frequency spacing of WDM channels are assumed to be 40 Gbps and 100 ㎓, respectively. The compensation method used in this approach is mid- span spectral inversion(MSSI), Highly-nonlinear dispersion shifted fiber(HNL-DSF) is used as a nonlinear medium of optical phase conjugator(On) in order to widely compensate WDM signal band. We confirmed that applying MSSI in WDM channels within special input power level compensates overall interferenced channels mainly due to FWM. But for long wavelength WDM channels having lower conjugated light power with respect to signal light power, compensation quality is deteriorated as dispersion coefficient of fiber becomes higher. Consequently, we confirmed that it is effective D apply MSSI with HNL-DSF as a nonlinear medium of OPC to WDM transmission link with relative small dispersion in order to compensate equally spaced WDM channels.

Dispersion Managed Optical Transmission Links with an Artificial Distribution of the SMF Length and Residual Dispersion per Span

  • Lee, Seong-Real
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2014
  • Dispersion management (DM), optical phase conjugation (OPC), and the combination of DM and OPC are promising techniques to compensate for optical signal distortion due to group velocity dispersion and nonlinear Kerr effects. The system performance improvement in DM links combined with OPC has been reported; however, the fixed residual dispersion per span (RDPS) usually used in these links restricts the flexibility of link configuration. Thus, in this paper, a flexible optical link configuration with artificially distributed single-mode fiber (SMF) lengths and RDPS in the combination of DM and OPC is proposed. Simulation results show that the best artificial distribution pattern is the gradually descending distribution of SMF lengths and the gradually ascending distribution of RDPS, as the number of fiber spans is increased, regardless of the average RDPS, the optimal net residual dispersion, and the dispersion coefficient of the dispersion compensating fiber.

Second Order Nonlinear Optical Polyimides Containing Organic Chromophores with an Oxadiazole Segment (옥사디아졸 결합의 유기 발색단이 도입된 이차비선형 광학 이미드 고분자)

  • Do, Jung Yun;Kim, Bong Gun;Kwon, Ji-Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.77-83
    • /
    • 2007
  • It is essential that second order nonlinear optical materials have low optical propagation losses in the wavelengths of second harmonic generation for practical applications in waveguides. Three dipolar chromophores substituted with nitro, cyano, and alkyl sulfone as an electron withdrawing group were prepared. The UV-Vis absorption spectra of the cyano and alkylsulfone chromophores showed a blue-shift compared to the nitro chromophore. The introduction of oxadiazole segment in the chromophore structure led to similar spectral shift. The blue-shift can produce low optical loses at second harmonics. The chromophores were successfully attached to a polyimide, yielding side chain polymers. The nonlinear optical property of the prepared optical polymers was determined by measuring electro-optic coefficient at 1.55 mm. The polymers exhibited high glass transition temperature of over $185^{\circ}C$ and thermal stability to $300^{\circ}C$ through differential scanning calorimeter analysis and thermal gravimetric analysis.

The Compensation Characteristics of WDM Channel Distortion Dependence on NRZ format and RZ Format (NRZ 형식과 RZ 형식에 따른 WDM채널 왜곡의 보상 특성)

  • 이성렬;조성언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1184-1190
    • /
    • 2003
  • In this paper, we investigated the characteristics of compensation for distorted NRZ signal and RZ signal in 320 Gbps WDM system as a function of channel input power, fiber dispersion coefficient and transmission length, respectively. The considered WDM transmission system is based on mid-span spectral inversion(MSSI) compensation method having highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of total transmission line. We confirmed that the signal input power range compensated by MSSI is broadened by using RZ as a signal format in WDM system with small fiber dispersion coefficient, The range of fiber dispersion coefficient compensating overall distorted WDM channels is limited, because degree of compensation for distorted channel with low conjugated-wave power becomes gradually degrade as fiber dispersion coefficient becomes gradually higher. It is showed that RZ format and NRZ format is suited for long-haul transmission in WDM system with small fiber dispersion coefficient and with large fiber dispersion coefficient, respectively.