• Title/Summary/Keyword: Nonlinear optical chromophore

Search Result 23, Processing Time 0.024 seconds

Thermally Crosslinkable Second-Order Nonlinear Optical Polymer Using Pentaerythritol tetrakis(2-mercaptoacetate) as Crosslinker

  • 한관수;심상연;이용석;장웅상;김낙중
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1168-1171
    • /
    • 1998
  • Two kinds of second-order nonlinear optical copolymers were prepared by the copolymerization of the vinyl monomers containing NLO chromophore, methacrylic acid, and methyl methacrylate or butyl methacrylate. Glass transition temperatures (Tg of copolymers were around 130 ℃. The copolymers were soluble in common organic solvents such as tetrahydrofuran (THF), cyclohexanone, and N,N-dimethylformamide (DMF). The crosslinked copolymer was obtained by thermal treatment using pentaerythritol tetrakis(2-mercaptoacetate) as a crosslinker and became insoluble in tetrahydrofuran (THF) and N,N-dimethylformamide (DMF). Poling was carried out at 120 ℃ for 20 min and identified with UV-Vis spectroscopy. Electro-optic coefficient (r33) measurement showed a value of 35 pm/V for polymer 2 at 633 nm. Temporal stability of copolymers was improved owing to the crosslinked network, which was successfully obtained at 170 ℃ for 30 min after poling.

Heterocyclic Nonlinear Optical Chromophores Composed of Phenothiazine or Carbazole Donor and 2-Cyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran Acceptor

  • Cho, Min-Ju;Kim, Ja-Youn;Kim, Jae-Hong;Lee, Seung-Hwan;Dalton, Larry R.;Choi, Dong-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.77-84
    • /
    • 2005
  • We prepared the new nonlinear optical chromophores that show fairly high microscopic nonlinearity through intramolecular charge transfer. Phenothiazine and carbazole units played an important role to contribute high electron donability and connect the resonance pathway via conjugative effect in the cyclized ring beside the aromatic ring. Theoretical calculation, electrochemical analysis, and absorption spectroscopic study gave us useful information about the energy states and microscopic nonlinearities of two serial chromophores. We compared the microscopic nonlinearities of four chromophores with the conjugation length and electron donability in the push-pull type NLO chromophores. The effect of gradient donability and lengthening the conjugation were investigated on the electronic state and microscopic nonlinearity.

An approach to Photorefractive Device Fabrication Utilizing Crosslinking Systems

  • Suh, Sang Chul;Shim, Sang Chul;Yoo, Dong Jin
    • Journal of Photoscience
    • /
    • v.10 no.3
    • /
    • pp.251-255
    • /
    • 2003
  • The composites fabricated by blending nonlinear optical (NLO) chromophore such as {4-[2-(4-nitrophenyl)-vinyl] phenyl}diphenylamine (NVPDA) with photoconducting crosslinkable matrix, bis-(4-ethynylphenyl)-(4-octyloxy-phenyl)amine (BEOPEA), showed photorefractive property. Many problems faced in typical organic photorefractive systems such as time-consuming chemical synthesis, difficulty in rational design, intrinsic instability and phase separation could be avoided by this fabrication method.

  • PDF

Synthesis and Properties of Nonlinear Optical Polymer Derived from α-Methyl Styrene/Maleic Anhydride by Polymer Reaction (고분자 반응을 이용한 Maleic anhydride계 비선형 광학 고분자의 합성 및 전기광학 특성)

  • Park, Lee Soon;Keum, Chang Dae;Song, Jae Won;Kim, Kwang Taek;Kim, Gi Heon;Kang, Shin Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.704-709
    • /
    • 1998
  • Non-linear optical polymer based on poly (${\alpha}$-methylstyrene-co-maleic anhydride) (MSMA) substrate polymer was prepared by polymer reaction method and its thermal and electro-optic properties were examined. In the polymer reaction between MSMA substrate polymer and 2-[4-(4-nitrophenylazo)-N-ethylphenylamino]ethanol (DR1) chromophore, the degree of substitution of DR1 into MSMA was higher with the 4-dimethylaminopyridine (DMAP) as catalyst and 3-dicyclohexyl carbodiimide (DCC) as dehydrating agent (sample, MSMA-DC) than the one with just 4-dimethylaminopyridine as catalyst (sample, MSMA-D). The synthesized NLO polymer (MSMA-DC) exhibited electro-optic coefficient of 18 pm/V (632.8 nm) and glass transition temperature ($T_g$) of about $175^{\circ}C$.

  • PDF

Synthesis and Properties of the New Photorefractive Material (새로운 광굴절재료의 제작 및 특성)

  • Min, Wan Ki;Kim, Nam Oh;Sasabe, Hiroyuki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.142-148
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials, have been developed based on polymeric composites, fully functional polymers and the multi-functional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting function or multifunctions play a very important role in photorefraction. In this paper, it confirmed that acceptor-substituted carbazoles show the multifunctionality both of photoconductivity and electro-optic(EO) activity and photorefractive materials newly can be developed with acceptor-substituted carbazoles.

Photorefractive Polymer System with a Low Glass Transition Temperature for a Holographic Recording

  • Kim, Nam-Jun;Chun, Hyun-Aee;Moon, In-Kyu;Joo, Won-Jae;Kim, Nak-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.4
    • /
    • pp.571-574
    • /
    • 2002
  • The photorefractive polymeric composite with good performance was prepared. The carbazole-substituted polysiloxane sensitized by 2,4,7-trinitro-9-fluorenone was used as a photoconducting medium and 1-[4-(2-nitrovinyl)phenyl]piperidine was added as an optically nonlinear chromophore. The photorefractive property of polymer was determined by diffraction efficiency using a 100 ㎛-thick film. The maximum diffraction efficiency ( ηmax) of 71% was obtained at the electric field of 70 V/ ㎛. The potential of the current polymer material as a holographic recording medium was evaluated by the demonstration of holographic recording and subsequent reading of optical image.

Synthesis and Cationic Polymerization of Vinyl Ethers Containing Oxynitrobenzylidenemalononitrile and Oxynitrobenzylidenecyanoacetate as the NLO-phores in the Side Chain

  • 이주연;김무용;안미라
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.567-572
    • /
    • 1999
  • 5-Nitro-2-(2'-vinyloxyethoxy)benzylidenemalononitrile (2a), methyl 5-nitro-2-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 3-nitro-4-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), methyl 3-nitro-4-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b), 2-nitro-5-(2'-vinyloxyethoxy)benzylidenemalononitrile (6a), and methyl 2-nitro-5-(2'-vinyloxyetboxy)benzylidenecyanoacetate (6b) were prepared by the condensation of 5-nitro-2-(2'-vinyloxyethoxy)benzaldehyde (1), 3-nitro-4-(2'-vinyloxyethoxy)benzaldehyde (3), and 2-nitro-5-(2'-vinyloxyethoxy)benzaldehyde (5) with malononitrile or methyl cyanoacetate, respectively. Vinyl ether monomers 2a-b, 4a-b, and 6a-b were polymerized with boron trifluoride etherate as a cationic initiator to yield poly(vinyl ethers) 7-9 having oxynitrobenzylidenemalononitrile and oxynitrobenzylidenecyanoacetate, which is effective chromophore for second-order nonlinear optical applications. Polymers 7-9 were soluble in common organic solvents such as acetone and DMSO. Tg values of the resulting polymers were in the range of 67-83 ℃. Electrooptic coefficient (r33) of the poled polymer films were in the range of 15-27 pm/V at 633 nm. Polymers 7-9 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for NLO device applications.

Synthesis and Cationic Polymerization of Multifunctional Vinyl Ethers Containing Dipolar Electronic Systems

  • 이주연;김지향;김민정
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.307-313
    • /
    • 1999
  • 2,4-Di-(2'-vinyloxyethoxy)benzylidenemalononitrile (la), methyl 2,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (lb), 3,4-di-(2'-vinyloxyethoxy)benzylidene malononitrile (2a), methyl 3,4-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (2b), 2,5-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (3a), methyl 2,5-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (3b), 2,3-di-(2'-vinyloxyethoxy)benzylidenemalononitrile (4a), and methyl 2,3-di-(2'-vinyloxyethoxy)benzylidenecyanoacetate (4b) were prepared by the condensation of 2,4-di-(2'-vinyloxyethoxy)benzaldehyde, 3,4-di-(2'-vinyloxyethoxy)benzaldehyde, 2,5-di-(2'-vinyloxyethoxy) benzaldehyde, and 2,3-di-(2'-vinyloxyethoxy)benzaldehyde with malononitrile or methyl cyanoacetate, respectively. Trifunctional divinyl ether monomers 1-4 were polymerized readily with boron trifluoride etherate as a cationic initiator to give optically transparent swelling poly(vinyl ethers) 5-8 havina oxybenzylidenemalononitrile and oxycyanocinnamate, which is presumably effective chromophore for second-order nonlinear optical applications. Polymers 5-8 were not soluble in common organic solvents such as acetone and DMSO due to crosslinking. Polymers 5-8 showed a thermal stability up to 300 ℃ in TGA thermograms, which is acceptable for electrooptic device applications.

Second harmonic generation of pulsed corona - poled nonlinear optical polymer films (펄스 corona 배향된 비선형광학 고분자박막의 제2 고조파발생)

  • Kim, Jun-Soo;Lee, Jong-Ha;Lee, Hwang-Un;Kim, Sang-Youl;Won, Young-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.4
    • /
    • pp.356-362
    • /
    • 2002
  • The molecular orientational dynamics of the nonlinear optical(NLO) side-chain polymer N-(4-nitrophenyl)-(L)-prolinol-poly (pphenylene terephthalates) have been studied using nonlinear optical responses as measured by second harmonic generation (SHG). A new pulsed corona poling is used to orient the NLO chromophores and the polymer segments into the noncentrosymmetric structure required to obtain the SHG signal. By corona poling of negative high voltage pulses with variable repetition rates (between 0.5 and 10 ㎑) at temperature between 25$^{\circ}C$ and 80$^{\circ}C$, well below and about the glass transition temperature 70$^{\circ}C$, the side-chain chromophores and the polymer chain contour rearrange themselves and create the domain structure observed by atomic force microscopy(AFM). The pulsed corona voltage enhances the orientational ordering of the NLO chromophores and also significantly influences the growth of SHG signal and the improved relaxation behavior after the poling field is removed, reducing the visible damage to the polymer film dramatically. This new pulsed corona poling experiment gave direct in situ evidence that the NLO chromophore and the polymer backbone undergo anisotropic rearrangement during the poling process.

Effect of the Photosensitizer on the Photo refractive Effect Using a Low $T_g$ Sol-Gel Glass

  • Choi, Dong-Hoon;Jun, Woong-Gi;Oh, Kwang-Yong;Yoon, Han-Na;Kim, Jae-Hong
    • Macromolecular Research
    • /
    • v.11 no.4
    • /
    • pp.250-255
    • /
    • 2003
  • We prepared the photorefractive sol-gel glass based on organic-inorganic hybrid materials containing a charge transporting molecule, second-order nonlinear optical (NLO) chromophore, photosensitizer, and plasticizer. Carbazole and 2-{ 4-[(2-hydroxy-ethyl)-methyl-amino]-benzylidene}-malononitrile were reacted with isocyanato-triethoxy silane and the functionalized silanes were employed to fabricate the efficient photorefractive media induding 2,4,7-trinitrot1uorenone (TNF) to form a charge transfer complex. The prepared sol-gel glass samples showed a large net gain coefficient and high diffraction efficiency at a certain composition. As the concentration of photosensitizer increased, the photorefractive properties were enhanced due to an increment of charge carrier density. Dynamic behavior of the diffraction efficiency was also investigated with the concentration of the photosensitizer.