• Title/Summary/Keyword: Nonlinear equations

Search Result 2,269, Processing Time 0.029 seconds

VIV simulation of riser-conductor systems including nonlinear soil-structure interactions

  • Ye, Maokun;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.241-259
    • /
    • 2019
  • This paper presents a fully three-dimensional numerical approach for analyzing deepwater drilling riser-conductor system vortex-induced vibrations (VIV) including nonlinear soil-structure interactions (SSI). The drilling riser-conductor system is modeled as a tensioned beam with linearly distributed tension and is solved by a fully implicit discretization scheme. The fluid field around the riser-conductor system is obtained by Finite-Analytic Navier-Stokes (FANS) code, which numerically solves the unsteady Navier-Stokes equations. The SSI is considered by modeling the lateral soil resistance force according to nonlinear p-y curves. Overset grid method is adopted to mesh the fluid domain. A partitioned fluid-structure interaction (FSI) method is achieved by communication between the fluid solver and riser motion solver. A riser-conductor system VIV simulation without SSI is firstly presented and served as a benchmark case for the subsequent simulations. Two SSI models based on a nonlinear p-y curve are then applied to the VIV simulations. Also, the effects of two key soil properties on the VIV simulations of riser-conductor systems are studied.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Nonlinear forced vibration of axially moving functionally graded cylindrical shells under hygro-thermal loads

  • Jin-Peng Song;Gui-Lin She;Yu-Jie He
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.99-109
    • /
    • 2024
  • Studying the dynamic behavior of axially moving cylindrical shells in hygro-thermal environments has important theoretical and engineering value for aircraft design. Therefore, in this paper, considering hygro-thermal effect, the nonlinear forced vibration of an axially moving cylindrical shell made of functionally graded materials (FGM) is studied. It is assumed that the material properties vary continuously along the thickness and contain pores. The Donnell thin shell theory is used to derive the motion equations of FGM cylindrical shells with hygro-thermal loads. Under the four sides clamped (CCCC) boundary conditions, the Gallekin method and multi-scale method are used for nonlinear analysis. The effects of power law index, porosity coefficient, temperature rise, moisture concentration, axial velocity, prestress, damping and external excitation amplitude on nonlinear forced vibration are explored through parametric research. It can be found that, the changes in temperature and humidity have a significant effect. Increasing in temperature and humidity will cause the resonance position to shift to the left and increase the resonance amplitude.

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

Simplified Method for Estimating Energy-Dissipation Capacity of Flexure-Dominant RC Members (휨지배 철근콘크리트 부재의 에너지 소산능력 평가방법)

  • 엄태성;박홍근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.297-305
    • /
    • 2002
  • As advanced earthquake analysis/design methods such as the nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and capacity of energy dissipation. However, currently, estimation of energy dissipation depends on empirical equations that are not sufficiently accurate, or experiment and sophisticated numerical analysis which are difficult to use in practice. In the present study, nonlinear finite element analysis was performed to investigate the behavioral characteristics of flexure-dominant RC members under cyclic load. The effects of axial force, arrangement of reinforcing bars, and reinforcement ratio on the cyclic behavior were studied. Based on the investigation, a simplified method to estimate the capacity of energy dissipation was proposed, and it was verified by the comparison with the finite element analyses and experiments. The proposed method can estimate the energy dissipation of RC members more precisely than currently used empirical equations, and it is easily applicable in practice.

  • PDF

A study of rippleless thrust force control for LPM (LPM의 추력리플 저감 기법 개발)

  • Kim, Moon-Hwan;Kim, Kook-Hun;Ha, In-Joong;Ko, Yo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.358-360
    • /
    • 1996
  • LPM(Linear pulse motor) has made linear motions by itself. And the LPM has higher thrust force ratio to mass and more wide driving speed lunges comparing with the conventional rotating type motors. However, there are the thrust force ripples in the LPM, which are produced by the mechanical structures and nonlinear back emf. It makes to hesitate the practical applications of LPM. Especially, it becomes needed to reduce the thrust force ripples for practical, which needs relative low driving speeds. For reducing the thrust force ripples, in the first place, it was built a new nonlinear linkage flux equations of the LPM. In these equations, the influence of permanent magnetic and variable reluctance thrust force components were considered. In this paper, some experimental results in the modeling of LPM are shown and detent lone and holding force characteristics of LPM are measured.

  • PDF

Random Analysis of Rolling Equation of Motion of Ships Based on Moment Equation Method (모멘트 방정식 방법에 의한 횡요 운동 방정식의 램덤 해석)

  • 배준홍;권순홍;하동대
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.41-45
    • /
    • 1992
  • In this paper an application technique of moment equation method to solution of nonlinear rolling equation of motion of ships is investigated. The exciting moment in the equation of rolling motion of ships is described as non-white noise. This non-white exciting moment is generated through use of a shaping filter. These coupled equations are used to generate moment equations. The nonstationary responses of the nonlinear system are obtained. The results are compared with those of a linear system.

  • PDF