• Title/Summary/Keyword: Nonlinear equations

Search Result 2,269, Processing Time 0.024 seconds

Derivation and Verification of the Relative Dynamics Equations for Aerial Refueling (공중재급유를 위한 상대운동방정식 유도 및 검증)

  • Jang, Jieun;Lee, Sangjong;Ryu, Hyuk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • This paper addresses the derivation of 6-DOF equation of Tanker and Receiver's aircraft for aerial refueling. The new set of nonlinear equations are derived in terms of the relative translational and rotational motion of receiver aircraft respect to the tanker aircraft body frame. Further the wind effect terms due to the tanker's turbulence are included. The derivation of absolute dynamic equation for tanker aircraft written in the inertial frame is calculated from the relative dynamics equations of receiver. The derived relative and absolute equations are implemented the simulation in the same flight conditions to verify the relative motion and compare the trim results by using the MATLAB/SIMULINK program.

A Novel Generalized Nonlinear Dispersion Equation for Five-Layer Waveguides with Kerr-like Nonlinearity

  • Jeong, Jong-Sool;Song, Seok-Ho;Lee, El-Hang
    • ETRI Journal
    • /
    • v.18 no.2
    • /
    • pp.75-86
    • /
    • 1996
  • A new method is proposed for the analysis of optical properties of stationary transverse electirc (TE) nonlinear waves in the five-layer waveguide which consists of a linear guiding layer with two nonlinear bounding layers sandwiched between a semi-infinite clad and a substrate. By using the relation of the interface electric fields, we obtain the generalized form of nonlinear dispersion equations as an analytic and flexible form. In order to verify the dispersion equation, we apply the dispersion equation to the analysis of the symmetric five-layer waveguide. The nonlinear dispersion curves for several thicknesses of the nonlinear thin film is also presented.

  • PDF

Nonlinear Response Characteristics of the ISSC TLP in Time Domain (시간영역에서 ISSC TLP의 비선형 응답 특성)

  • Lee, Chang-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.5 s.72
    • /
    • pp.30-35
    • /
    • 2006
  • In tire presence of incident waves with different frequencies, there are second order sum and difference frequency wave exciting forces due to the nonlinearity of tire incident waves. Although the magnitude of these nonlinear wave forces are small, they act on TLPs at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency waveexciting forces occurring close to tire natural frequencies of TLPs often give greater contributions to high and law frequency resonant responses. Nonlinear motion responses and tension variations in the time domain are analyzed by solving the motion equations with nonlinear wave exciting forces using tire numerical analysismethod. The numerical results of time domain analysis for the nonlinear wave exciting forces on the ISSC TLP in regular waves are compared with the numerical and experimental ones of frequency domain analysis. The results of this comparison confirmed tire validity of the proposed approach.

Dynamic Analysis of Harmonically Excited Non-Linear System Using Multiple Scales Method

  • Moon, Byung-Young;Kang, Beom-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.819-828
    • /
    • 2002
  • An analytical method is presented for evaluation of the steady state periodic behavior of nonlinear systems. This method is based on the substructure synthesis formulation and a MS (multiple scales) procedure, which is applied to the analysis of nonlinear responses. The proposed procedure reduces the size of large degrees-of-freedom problem in solving nonlinear equations. Feasibility and advantages of the proposed method are illustrated with the nonlinear rotating machine system as an example of large mechanical structure systems. In addition, its efficiency for nonlinear response prediction will be shown by comparison of other conventional methods.

Iterative parameter estimation for nonlinear measurements (비선형 측정에 대한 반복 계수측정 기법)

  • Chung, Tae-Ho;Je, Chang-Hae;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.314-317
    • /
    • 1993
  • In this paper, the IPE(Iterative Parameter Estimation) methods for the nonlinear measurements are proposed. The IPE methods convert the problems of the parameter estimation for the nonlinear measurements to that of the solution of the nonlinear equations approximately and use several iterative numerical solutions, such as fixed points theory, Newton's methods, quasi-Newton's methods and steepest descent techniques. the IPE methods for the nonlinear measurements-in the case of the error estimation for the inertial navigation systems are simulated, and it is found that the estimation errors for the nonlinear measurements decrease rapidly and converge to almost that of the linear LSE(Least Squares Estimation) when the IPE methods are applied.

  • PDF

Equivalent nonlinear error model of SDINS using quaternion (쿼터니언을 이용한 SDINS의 등가 비선형 오차모델)

  • Yoo, Myung-Jong;Jeon, Chang-Bae;Park, Jun-Pyo;Yoo, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.864-866
    • /
    • 1996
  • The attitude error is expressed using four kinds of quaternion errors. And the explicit relation equations between them are derived four kinds of nonlinear error models of SDINS using the their explicit relation are also proposed for a nonlinear filter which may be available for a system in the presence of a large attitude error the concept of the proposed nonlinear error model is applied to the velocity aided SDINS using a linear Kalman filter and an extended Kalman filter the simulation results reveal a improvement of performance using the nonlinear error model.

  • PDF

Position Control of a Pneumatic Cylinder with a Nonlinear Compensator and a Disturbance Observer (비선형 보상기와 외란관측기를 이용한 공기압 실리더의 위치제어)

  • Jang, Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1795-1805
    • /
    • 2002
  • A position controller which can achieve a specified dynamic performance irrespective of the different operating position of the pneumatic cylinder is proposed. The position controller developed in this paper is composed of a nonlinear compensator and a disturbance observer. The nonlinear compensator which feeds back position, velocity and acceleration is derived from the nonlinear dominating equations of the position control system to compensate for variation of dynamic characteristics of a pneumatic cylinder according to the change of the operating position. The disturbance observer including a simplified linear model is designed to reduce the effect of model discrepancy in the low frequency range which cannot be suppressed by the nonlinear compensator. The results of the experiments show that the position control performance maintains a designed performance regardless of the variations of an operating position of the pneumatic cylinder.

A NEW SOLUTION METHOD FOR STATE EQUATIONS OF NONLINEAR SYSTEM

  • Zhang, Cheng-Hui;Tan, Cheng-Hui;Cui, Na-Xin
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.1
    • /
    • pp.175-184
    • /
    • 1999
  • Along with the computation and analysis for nonlinear system being more and more involved in the fields such as automation control electronic technique and electrical power system the nonlin-ear theory has become quite a attractive field for academic research. In this paper we derives the solutions for state equation of nonlinear system by using the inverse operator expression of the so-lutions is obtained. An actual computation example is given giving a comparison between IOM and Runge-kutta method. It has been proved by our investigation that IOM has some distinct advantages over usual approximation methods in that it is computationally con-venient rapidly convergent provides accurate solutions not requiring perturbation linearization or the massive computation inherent in discrietization methods such as finite differences. So the IOM pro-vides an effective method for the solution of nonlinear system is of potential application valuable in nonlinear computation.

Full-Wave Analysis of Microwave Amplifiers with Nonlinear Device by the FDTD Algorithm

  • Kang, Hee-Jin;Park, Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.2 no.2
    • /
    • pp.81-86
    • /
    • 2002
  • This paper presents the full wave analysis of microwave circuits with nonlinear device using the finite difference time domain method. The equivalent current source is used to model nonlinear device and all the electric field components at the nonlinear device are updated by FDTD algorithm. The currents and voltages of nonlinear device are calculated by the state equations and iteration method. To validate the proposed method, the S-parameters of NEC NE72089 MESFET in various conditions are analyzed and the results are compared with those of the ADS. The proposed method is applied to the analysis of a microwave amplifier, which includes NEC NE72089 MESFET. The analysis results obtained by the present method show good agreement with those of the ADS.

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.