• Title/Summary/Keyword: Nonlinear elasticity

Search Result 135, Processing Time 0.028 seconds

A Study on the Flexural Behavior of Concrete Using Non-burnt Cement (비소성 시멘트 콘크리트의 휨 거동에 관한 연구)

  • Yoo, S.W.;Nam, E.Y.;Lee, S.J.;Hwang, S.B.;Soh, Y.S.;Kim, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2012
  • If cement can be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime instead of clinker, there would be many advantages, including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by CO2 discharge, and reduction of the production cost. By this reason, in this study, mechanical behavior tests of non-burnt cement concrete were performed, and elasticity modulus and stress-strain relationship of non-burnt cement concrete were proposed. 6 test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. By the test results, there was no difference between ordinary concrete and non-burnt cement concrete of flexural behavior. In order to verify the proposed non-burnt cement concrete model, nonlinear analytical model was derived by using strain compatibility method. By the results of comparison between test results, ordinary concrete model and proposed model, The proposed model well predicted the flexural behavior of non-burnt cement concrete.

Algorithms for Ultrasound Elasticity Imaging (초음파 탄성 영상 알고리듬)

  • Kwon, Sung-Jae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.484-493
    • /
    • 2012
  • Since the 1980s, there have been many research activities devoted to quantitatively characterizing and imaging human tissues based on sound speed, attenuation coefficient, density, nonlinear B/A parameter, etc., but those efforts have not yet reached the stage of commercialization. However, a new imaging technology termed elastography, which was proposed in the early 1980s, has recently been implemented in commercial clinical ultrasound scanners, and is now being used to diagnose prostates, breasts, thyroids, livers, blood vessels, etc., more quantitatively as a complementary adjunct modality to the conventional B-mode imaging. The purpose of this article is to introduce and review various elastographic algorithms for use in quasistatic or static compression type elasticity imaging modes. Most of the algorithms are based on the crosscorrelation or autocorrelation function methods, and the fundamental difference is that the time shift is estimated by changing the lag variable in the former, while it is directly obtained from the phase shift at a fixed lag in the latter.

Swelling behavior Simulation Study of KJ-II Bentonite Buffer Blocks under Various Experimental Conditions (다양한 실험조건에 따른 경주 벤토나이트 완충재 블록의 팽윤 거동 해석)

  • Lee, Deuk-Hwan;Go, Gyu-Hyun;Lee, Gi-Jun;Yoon, Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.29-40
    • /
    • 2024
  • This study aimed to evaluate the swelling behavior characteristics of KJ-II buffer blocks by performing numerical analysis of swelling pressure measurement experiments using the nonlinear elasticity model of COMSOL Multiphysics. The analysis was conducted under boundary conditions that included isotropic constraints and water injection pressure, mirroring the experimental settings. Validation of the numerical model was achieved by comparing its outputs with experimental results. The validated model was then used to simulate swelling deformations under unconfined conditions and to analyze swelling pressure as influenced by dry density and the geometric shape of the buffer material. The results accurately represented the swelling deformation observed during the saturation process and demonstrated that swelling pressure increases with higher dry density. Moreover, simulations concerning the geometric shape of the buffer material indicated a markedly faster rate of pressure increase in U-shaped samples compared to cylindrical ones. Analysis suggested that stress manifested preemptively near the internal edges of U-shaped samples during saturation. To enhance the simulation's fidelity to actual buffer material behavior, further refinement of the analysis model using a nonlinear elasticity model is recommended.

FDI and the Evolution of Directed Technological Progress Bias: New Evidence from Korean Outward Investment

  • Boye Li;Xiang Li;Yaokun Wu
    • Journal of Korea Trade
    • /
    • v.27 no.5
    • /
    • pp.1-22
    • /
    • 2023
  • Purpose - Southeast Asia has been the focus of Korea's foreign investment. Korea has been helping developing countries in Southeast Asia achieve economic growth and win-win cooperation through capital exports. FDI is an important channel for technology diffusion. However, the impact of FDI on the bias of technological progress in the host country is dependent on the host country's own endowment structure and capital-labor factor substitution elasticity. Therefore, the central issue of this paper is to accurately evaluate the impact of Korea's FDI to the four Southeast Asian countries in various industries on their bias of technological progress. Design/methodology - The paper uses macroeconomic data for Korea and four East Asian countries to estimate capital-labor factor elasticities of substitution using nonlinear, seemingly uncorrelated regressions (NLSUR). Then, the biased technological change index (BTCI) is calculated for each country. Finally, panel data analysis is used to explore the impact of Korean FDI in various industries in the four Southeast Asian countries on their own directed technological progress, and a robustness test is conducted. Findings - There is a substitution relationship between capital and labor factors based on their elasticity in Korea, Singapore and the Philippines. There is a complementary relationship between capital and labor factors in Indonesia and Malaysia. According to the BTCI, there is a trend toward labor-biased technological progress in all countries. Korean investments in manufacturing, wholesale and retail trade in the host country trigger capital-biased technological change in the host country; investments in the finance, insurance and information and communication sectors trigger labor-biased technological change. In addition, this paper also confirms that directed technological progress can enable cross-country transmission. Originality/value - The innovation of this paper lies in three aspects. First, we estimate the BTCI for five countries and explore the trend and situation of directed technological progress in each country from each country's own perspective. Second, we explore the impact of Korean FDI in the host country on the bias to its technological progress at the industry level. Second, we explore the impact of Korean FDI in various industries in the four Southeast Asian countries on the four countries' own directed technological progress from a national perspective. Finally, we propose corresponding countermeasures for technological progress from the perspective of inverse factor endowment. These innovative points not only expand the understanding of technological progress and cross-country technology transfer in East Asia but also provide practical references for policy-makers and business operators.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.

Analysis of composite girders with hybrid GFRP hat-shape sections and concrete slab

  • Alizadeh, Elham;Dehestani, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1135-1152
    • /
    • 2015
  • Most of current bridge decks are made of reinforced concrete and often deteriorate at a relatively rapid rate in operational environments. The quick deterioration of the deck often impacts other critical components of the bridge. Another disadvantage of the concrete deck is its high weight in long-span bridges. Therefore, it is essential to examine new materials and innovative designs using hybrid system consisting conventional materials such as concrete and steel with FRP plates which is also known as composite deck. Since these decks are relatively new, so it would be useful to evaluate their performances in more details. The present study is dedicated to Hat-Shape composite girder with concrete slab. The structural performance of girder was evaluated with nonlinear finite element method by using ABAQUS and numerical results have been compared with experimental results of other researches. After ensuring the validity of numerical modeling of composite deck, parametric studies have been conducted; such as investigating the effects of constituent properties by changing the compressive strength of concrete slab and Elasticity modulus of GFRP materials. The efficacy of the GFRP box girders has been studied by changing GFRP material to steel and aluminum. In addition, the effect of Cross-Sectional Configuration has been evaluated. It was found that the behavior of this type of composite girders can be studied with numerical methods without carrying out costly experiments. The material properties can be modified to improve ultimate load capacity of the composite girder. strength-to-weight ratio of the girder increased by changing the GFRP material to aluminum and ultimate load capacity enhanced by deformation of composite girder cross-section.

Study of the Prediction of Fatigue Damage Considering the Hydro-elastic Response of a Very Large Ore Carrier (VLOC) (유탄성 응답을 고려한 초대형 광탄 운반선(VLOC)의 피로 손상 예측 기법에 관한 연구)

  • Kim, Beom-Il;Song, Kang-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • Estimating fatigue damage is a very important issue in the design of ships. The springing and whipping response, which is the hydro-elastic response of the ship, can increase the fatigue damage of the ship. So, these phenomena should be considered in the design stage. However, the current studies on the the application of springing and whipping responses at the design stage are not sufficient. So, in this study, a prediction method was developed using fluid-structural interaction analysis to assess of the fatigue damage induced by springing and whipping. The stress transfer function (Stress RAO) was obtained by using the 3D FE model in the frequency domain, and the fatigue damage, including linear springing, was estimated by using the wide band damage model. We also used the 1D beam model to develop a method to estimate the fatigue damage, including nonlinear springing and whipping by the vertical bending moment in the short-term sea state. This method can be applied to structural members where fatigue strength is weak to vertical bending moments, such as longitudinal stiffeners. The methodology we developed was applied to 325K VLOC, and we analyzed the effect of the springing and whipping phenomena on the existing design.

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

Fire Fragility Analysis of Steel Moment Frame using Machine Learning Algorithms (머신러닝 기법을 활용한 철골 모멘트 골조의 화재 취약도 분석)

  • Xingyue Piao;Robin Eunju Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.57-65
    • /
    • 2024
  • In a fire-resistant structure, uncertainties arise in factors such as ventilation, material elasticity modulus, yield strength, coefficient of thermal expansion, external forces, and fire location. The ventilation uncertainty affects thefactor contributes to uncertainties in fire temperature, subsequently impacting the structural temperature. These temperatures, combined with material properties, give rise to uncertain structural responses. Given the nonlinear behavior of structures under fire conditions, calculating fire fragility traditionally involves time-consuming Monte Carlo simulations. To address this, recent studies have explored leveraging machine learning algorithms to predict fire fragility, aiming to enhance efficiency while maintaining accuracy. This study focuses on predicting the fire fragility of a steel moment frame building, accounting for uncertainties in fire size, location, and structural material properties. The fragility curve, derived from nonlinear structural behavior under fire, follows a log-normal distribution. The results demonstrate that the proposed method accurately and efficiently predicts fire fragility, showcasing its effectiveness in streamlining the analysis process.

Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.347-360
    • /
    • 2017
  • The goal of this study is to fill this apparent gap in the area about vibration analysis of multiwalled carbon nanotubes (MWCNTs) curved panels by providing 3-D vibration analysis results for functionally graded multiwalled carbon nanotubes (FG-MWCNTs) sandwich structure with power-law distribution of nanotube. The effective material properties of the FG-MWCNT structures are estimated using a modified Halpin-Tsai equation. Modified Halpin-Tsai equation was used to evaluate the Young's modulus of MWCNT/epoxy composite samples by the incorporation of an orientation as well as an exponential shape factor in the equation. The exponential shape factor modifies the Halpin-Tsai equation from expressing a straight line to a nonlinear one in the MWCNTs wt% range considered. Also, the mass density and Poisson's ratio of the MWCNT/phenolic composite are considered based on the rule of mixtures. Parametric studies are carried out to highlight the influence of MWCNT volume fraction in the thickness, different types of CNT distribution, boundary conditions and geometrical parameters on vibrational behavior of FG-MWCNT thick curved panels. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary conditions including Free, Simply supported and Clamped at the curved edges. For an overall comprehension on 3-D vibration analysis of sandwich panel, some mode shape contour plots are reported in this research work.