• Title/Summary/Keyword: Nonlinear differential equations

Search Result 605, Processing Time 0.024 seconds

Studies on Variable Liquid-Column Oscillator for High Efficiency Floating Wave Energy Conversion System (가변 수주진동장치를 이용한 고효율 파력발전에 관한 연구)

  • Yang, Dong-Soon;Cho, Byung-Hak
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • The results of a simulation study of variable liquid column oscillations in U-tanks with a novel control scheme are presented. The configuration under investigation is analogous to that of the tuned liquid-column damper used to suppress oscillatory motion in large structures like tall buildings and cargo ships. However, by virtue of an adequate controller, the response of amplitude of the U-tanks becomes larger in a desired frequency range. The motion of wave energy conversion system equipped with a variable liquid column oscillator is described by a series of nonlinear differential equations. The equations describe the motion of body under ocean wave excitation, and the motion of liquid with an air-spring effect caused by the compression and expansion of air in vertical liquid columns and air chambers. It is shown that the effect of the air-spring has a vital role to maintain the natural frequency of oscillation in the system to synchronize with the frequency of the ocean wave, thus the system provides the most effective mode for energy extraction from the ocean.

An Extended Similarity Solution for One-Dimensional Multicomponent Alloy Solidification in the Presence of Shrinkage-Induced Flow (체적수축유동이 있는 일차원 다원합금 응고에 대한 확장된 해석해)

  • Chung, Jae-Dong;Yoo, Ho-Seon;Choi, Man-Soo;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.426-434
    • /
    • 2000
  • This paper deals with a generalized similarity solution for the one-dimensional solidification of ternary or higher-order multicomponent alloys. The present approach not only retains the existing features of binary systems such as temperature- solute coupling, shrinkage-induced flow, solid-liquid property differences, and finite back diffusion, but also is capable of handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. For an alloy of N-solute species, governing equations in the mushy region reduce to (N+2) nonlinear ordinary differential equations via similarity transformation, which are to be solved along with the closed-form solutions for the solid and liquid regions. A linearized correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus positions stably. The result for a sample ternary alloy agrees excellently with the numerical prediction as well as the reported similarity solution. Additional calculations are also presented to show the utility of this study. Finally, it is concluded that the present analysis includes the previous analytical approaches as subsets.

Seismic response of foundation-mat structure subjected to local uplift

  • El Abbas, Nadia;Khamlichi, Abdellatif;Bezzazi, Mohammed
    • Coupled systems mechanics
    • /
    • v.5 no.4
    • /
    • pp.285-304
    • /
    • 2016
  • The effects of large rotations and p-delta on the dynamic response of a structure subjected to seismic loading and local uplift of its foundation were analyzed in this work. The structure was modeled by an equivalent flexible mat mounted on a rigid foundation that is supported either by a Winkler soil type or a rigid soil. The equations of motion of the system were derived by taking into account the equilibrium of the coupled foundation-mat system where the structure was idealized as a single-degree-of-freedom. The obtained nonlinear coupled system of ordinary differential equations was integrated by using an adequate numerical scheme. A parametric study was performed then in order to evaluate the maximum response of the system as function of the intensity of the earthquake, the slenderness of the structure, the ratio of the mass of the foundation to the mass of the structure. Three cases were considered: (i) local uplift of foundation under large rotation with the p-delta effect, (ii) local uplift of foundation under large rotation without including the p-delta effect, (iii) local uplift of foundation under small rotation. It was found that, in the considered ranges of parameters and for moderate earthquakes, assuming small rotation of foundation under seismic loading can yield more adverse structural response, while the p-delta effect has almost no effect.

Modeling and Simulation for PIG with Bypass Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.9
    • /
    • pp.1302-1310
    • /
    • 2001
  • This paper introduces modeling and simulation results for pipeline inspection gauge (PIG) with bypass flow control in natural gas pipeline. The dynamic behaviour of the PIG depends on the different pressure across its body and the bypass flow through it. The system dynamics includes: dynamics of driving gas flow behind the PIG, dynamics of expelled gas in front of the PIG, dynamics of bypass flow, and dynamics of the PIG. The bypass flow across the PIG is treated as incompressible flow with the assumption of its Mach number smaller than 0.45. The governing nonlinear hyperbolic partial differential equations for unsteady gas flows are solved by method of characteristics (MOC) with the regular rectangular grid under appropriate initial and boundary conditions. The Runge-Kuta method is used for solving the steady flow equations to get initial flow values and the dynamic equation of the PIG. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. The simulation is performed with a pipeline segment in the Korea Gas Corporation (KOGAS) low pressure system, Ueijungboo-Sangye line. Simulation results show us that the derived mathematical model and the proposed computational scheme are effective for estimating the position and velocity of the PIG with bypass flow under given operational conditions of pipeline.

  • PDF

Waveform Relaxation Method for Reactor Transient Analysis (원자로 천이해석을 위한 파형완화법)

  • Park, Keon-Woo;Co, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.845-852
    • /
    • 1995
  • We investigate the concurrent solution of differential equations by the waveform relaxation (WR) method, an iterative method for analyzing linear and nonlinear dynamical systems in the time do-main. The method, at each iteration, decomposes the dynamical system into several subsystems, each of which is analyzed for the entire given time interval. The method, when efficiently implemented, results in algorithms with a highly parallelizable concurrent fraction. In this paper, the waveform relaxation method is introduced and applied to two types of reactor dynamics problems. It is concluded that the U method can be applied to reactor dynamics equations, but that its parallel performance on the KMRR dynamics is only modest.

  • PDF

Accuracy of incidental dynamic analysis of mobile elevating work platforms

  • Jovanovic, Miomir L.J.;Radoicic, Goran N.;Stojanovic, Vladimir S.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.553-562
    • /
    • 2019
  • This paper presents the results of a study into the dynamic behaviour of a support structure of a mobile elevating work platform. The vibrations of the mechanical system of the observed structure are examined analytically, numerically, and experimentally. Within the analytical examination, a simple mathematical model is developed to describe free and forced vibrations. The dynamic analysis of the mechanical system is conducted using a discrete dynamic model with a reduced number of vibrational degrees of freedom. On the basis of the expression for the system energy, and by applying Lagrange's equations of the second kind, differential equations are derived for system vibrations, frequencies are determined, and the laws of forced platform vibration are established. At the same time, a nonlinear FEM model is developed and the laws of free and forced vibration are determined. The experimental and numerical part of the study deal with the examination of the real structure in extreme conditions, taking into account: the lowest eigenfrequency, forced actions that could endanger the general stability, the maximal amplitudes, and the acceleration of the work platform. The obtained analytical and numerical results are compared with the experiments. The experimental verification points to the adverse behaviour of the platform in excitation cases - swaying. In such a situation, even a relatively small physical force can lead to unacceptably high amplitudes of displacement and acceleration - exceeding the usual work values.

Entropy Generation Minimization in MHD Boundary Layer Flow over a Slendering Stretching Sheet in the Presence of Frictional and Joule Heating

  • Afridi, Muhammad Idrees;Qasim, Muhammad;Khan, Ilyas
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1303-1309
    • /
    • 2018
  • In the present paper, we study the entropy analysis of boundary layer flow over a slender stretching sheet under the action of a non uniform magnetic field that is acting perpendicular to the flow direction. The effects of viscous dissipation and Joule heating are included in the energy equation. Using similarity transformation technique the momentum and thermal boundary layer equations to a system of nonlinear differential equations. Numerical solutions are obtained using the shooting and fourth-order Runge-Kutta method. The expressions for the entropy generation number and Bejan number are also obtained using a suggested similarity transformation. The main objective of this article is to investigate the effects of different governing parameters such as the magnetic parameter ($M^2$), Prandtl number (Pr), Eckert number (Ec), velocity index parameter (m), wall thickness parameter (${\alpha}$), temperature difference parameter (${\Omega}$), entropy generation number (Ns) and Bejan number (Be). All these effects are portrayed graphically and discussed in detail. The analysis reveals that entropy generation reduces with decreasing wall thickness parameter and increasing temperature difference between the stretching sheet and the fluid outside the boundary layer. The viscous and magnetic irreversibilities are dominant in the vicinity of the stretching surface.

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

A method to evaluate the frequencies of free transversal vibrations in self-anchored cable-stayed bridges

  • Monaco, Pietro;Fiore, Alessandra
    • Computers and Concrete
    • /
    • v.2 no.2
    • /
    • pp.125-146
    • /
    • 2005
  • The objective of this paper is setting out, for a cable-stayed bridge with a curtain suspension, a method to determine the modes of vibration of the structure. The system of differential equations governing the vibrations of the bridge, derived by means of a variational formulation in a nonlinear field, is reported in Appendix C. The whole analysis results from the application of Hamilton's principle, using the expressions of potential and kinetic energies and of the virtual work made by viscous damping forces of the various parts of the bridge (Monaco and Fiore 2003). This paper focuses on the equation concerning the transversal motion of the girder of the cable-stayed bridge and in particular on its final form obtained, restrictedly to the linear case, neglecting some quantities affecting the solution in a non-remarkable way. In the hypotheses of normal mode of vibration and of steady-state, we propose the resolution of this equation by a particular method based on a numerical approach. Respecting the boundary conditions, we derive, for each mode of vibration, the corresponding frequency, both natural and damped, the shape-function of the girder axis and the exponential function governing the variability of motion amplitude in time. Finally the results so obtained are compared with those deriving from the dynamic analysis performed by a finite elements calculation program.

Domains of Attraction of a Forced Beam with Internal Resonance (내부공진을 가진 보의 흡인영역)

  • 이원경;강명란
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1711-1721
    • /
    • 1992
  • A nonlinear dissipative dynamical system can often have multiple attractors. In this case, it is important to study the global behavior of the system by determining the global domain of attraction of each attractor. In this paper we study the global behavior of a forced beam with two mode interaction. The governing equation of motion is reduced to two second-order nonlinear nonautonomous ordinary differential equations. When .omega. /=3.omega.$_{1}$ and .ohm.=.omega $_{1}$, the system can have two asymptotically stable steady-state periodic solutions, where .omega./ sub 1/, .omega.$_{2}$ and .ohm. denote natural frequencies of the first and second modes and the excitation frequency, respectively. Both solutions have the same period as the excitation period. Therefore each of them shows up as a period-1 solution in Poincare map. We show how interpolated mapping method can be used to determine the two four-dimensional domains of attraction of the two solutions in a very effective way. The results are compared with the ones obtained by direct numerical integration.