• Title/Summary/Keyword: Nonlinear differential equation

Search Result 447, Processing Time 0.027 seconds

Three-Level Optimal Control of Nonlinear Systems Using Fast Walsh Transform (고속월쉬변환을 이용한 비선형 시스템의 3계층 최적제어)

  • Kim, Tai-Hoon;Shin, Seung-Kwon;Cho, Young-Ho;Lee, Han-Seok;Lee, Jae-Chun;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.11
    • /
    • pp.505-513
    • /
    • 2001
  • This paper presents the new three-level optimal control scheme for the large scale nonlinear systems, which is based on fast walsh transform. It is well known that optimization for nonlinear systems leads to the resolution of a nonlinear two point boundary value problem which always requires a numerical iterative technique for their solution. However, Three-level costate coordination can avoid two point boundary condition in subsystem. But this method also has the defect that must solve high order differential equation in intermediate level. The proposed method makes use of fast walsh transform, therefore, is simple in computation because of solving algebra equation instead of differential equation.

  • PDF

Superharmonic and subharmonic resonances of a carbon nanotube-reinforced composite beam

  • Alimoradzadeh, M.;Akbas, S.D.
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.353-363
    • /
    • 2022
  • This paper presents an investigation about superharmonic and subharmonic resonances of a carbon nanotube reinforced composite beam subjected to lateral harmonic load with damping effect based on the modified couple stress theory. As reinforcing phase, three different types of single walled carbon nanotubes (CNTs) distribution are considered through the thickness in polymeric matrix. The governing nonlinear dynamic equation is derived based on the von Kármán nonlinearity with using of Hamilton's principle. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. Effects of different patterns of reinforcement, volume fraction, excitation force and the length scale parameter on the frequency-response curves of the carbon nanotube reinforced composite beam are investigated. The results show that volume fraction and the distribution of CNTs play an important role on superharmonic and subharmonic resonances of the carbon nanotube reinforced composite beams.

EXISTENCE AND UNIQUENESS OF SOLUTIONS FOR A SINGULAR SYSTEM OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Wang, Lin;Lu, Xinyi
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.877-894
    • /
    • 2013
  • In this paper, we study the existence and uniqueness of solutions for a singular system of nonlinear fractional differential equations with integral boundary conditions. We obtain existence and uniqueness results of solutions by using the properties of the Green's function, a nonlinear alternative of Leray-Schauder type, Guo-Krasnoselskii's fixed point theorem in a cone. Some examples are included to show the applicability of our results.

PERELMAN TYPE ENTROPY FORMULAE AND DIFFERENTIAL HARNACK ESTIMATES FOR WEIGHTED DOUBLY NONLINEAR DIFFUSION EQUATIONS UNDER CURVATURE DIMENSION CONDITION

  • Wang, Yu-Zhao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1539-1561
    • /
    • 2021
  • We prove Perelman type 𝒲-entropy formulae and differential Harnack estimates for positive solutions to weighed doubly nonlinear diffusion equation on weighted Riemannian manifolds with CD(-K, m) condition for some K ≥ 0 and m ≥ n, which are also new for the non-weighted case. As applications, we derive some Harnack inequalities.

Post-buckling Behavior of Tapered Columns under a Combined Load using Differential Transformation

  • Yoo, Yeong Chan
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 2006
  • In this research, the analysis of post-buckling behavior of tapered columns has been performed under a combined load of uniformly distributed axial load along the length and concentric axial load at free end by solving the nonlinear differential equation with the differential transformation technique. The buckling load at various slopes at free end of column is calculated and the results of the analysis using the differential transformation technique is verified with those of previous studies. It is also shown through the results that the buckling load of sinusoidal tapered columns is largest, the linear is second largest, and the parabolic is small in the all ranges of slopes at free end and the deflection of parabolic tapered columns in the x coordinates is largest, the sinusoidal is second largest, and the linear is smallest in the range of slope 0 to 140 degrees at free end. However, when the range of the slope is 160 to 176 degrees at the free end, the deflection of sinusoidal tapered columns in the x coordinates is largest, the linear is second largest, and the parabolic is smallest. In addition, for the linear tapered column, the buckling load increases along with the flexural stiffness ratio. Also, for the parabolic and the sinusoidal tapered column, the buckling loads increase and decrease as the flexural ratios increase in the range of flexural stiffness ratio n = 1.0 to n = 2.0. Through this research, it is verified that the differential transformation technique can be applied to solve the nonlinear differential equation problems, such as analysis of post-buckling behavior of tapered columns. It is also expected that the differential transformation technique apply to various more complicated problems in future.

STABILITIES FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Nam Jip;Song, Sse Mok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.9 no.1
    • /
    • pp.165-174
    • /
    • 1996
  • Using the comparison principle and inequalities we obtain some results on boundedness and stabilities of solutions of the nonlinear functional differential equation $y^{\prime}=f(t,y)+g(t,y,Ty)$.

  • PDF

ON INEQUALITIES OF GRONWALL TYPE

  • Choi, Sung Kyu;Kang, Bowon;Koo, Namjip
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2007
  • In this paper, we improve the results of [9] and give an application to boundedness of the solutions of nonlinear integro-differential equations.

  • PDF

OSCILLATIONS OF CERTAIN NONLINEAR DELAY PARABOLIC BOUNDARY VALUE PROBLEMS

  • Zhang, Liqin;Fu, Xilin
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.137-149
    • /
    • 2001
  • In this paper we consider some nonlinear parabolic partial differential equations with distributed deviating arguments and establish sufficient conditions for the oscillation of some boundary value problems.

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.