• Title/Summary/Keyword: Nonlinear Stochastic State Estimation

Search Result 17, Processing Time 0.027 seconds

States Estimation of Nonlinear Stochastic System Using Single Term Walsh Series (월쉬 단일항 전개를 이용한 비선형 확률 시스템의 상태추정)

  • Lim, Yun-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.115-120
    • /
    • 2008
  • The EKF(Extended Kalman filter) method which is the state estimation algorithm of nonlinear stochastic system depends on the initial error and the estimated states. Therefore, the divergence of the estimated state can be caused if the initial values of the estimated states are not chosen as approximate real state values. In this paper, the demerit of the existing EKF method is improved using the EKF algorithm transformated by STWS(Single Term Walsh Series). This method linearizes each sampling interval of continous-time system through the derivation of an algebraic iterative equation without discretizing continuous system by the characteristic of STWS, the convergence of the estimated states can be improved. The validity of the proposed method is checked through comparison with the existing EKF method in simulation.

A Survey on State Estimation of Nonlinear Systems (비선형 시스템의 상태변수 추정기법 동향)

  • Jang, Hong;Choi, Su-Hang;Lee, Jay Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.277-288
    • /
    • 2014
  • This article reviews various state estimation methods for nonlinear systems, particularly with a perspective of a process control engineer. Nonlinear state estimation methods can be classified into the following two categories: stochastic approaches and deterministic approaches. The current review compares the Bayesian approach, which is mainly a stochastic approach, and the MHE (Moving Horizon Estimation) approach, which is mainly a deterministic approach. Though both methods are reviewed, emphasis is given to the latter as it is particularly well-suited to highly nonlinear systems with slow sampling rates, which are common in chemical process applications. Recent developments in underlying theories and supporting numerical algorithms for MHE are reviewed. Thanks to these developments, applications to large-scale and complex chemical processes are beginning to show up but they are still limited at this point owing to the high numerical complexity of the method.

Evolution Strategies Based Particle Filters for Simultaneous State and Parameter Estimation of Nonlinear Stochastic Models

  • Uosaki, K.;Hatanaka, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1765-1770
    • /
    • 2005
  • Recently, particle filters have attracted attentions for nonlinear state estimation. In this approaches, a posterior probability distribution of the state variable is evaluated based on observations in simulation using so-called importance sampling. We proposed a new filter, Evolution Strategies based particle (ESP) filter to circumvent degeneracy phenomena in the importance weights, which deteriorates the filter performance, and apply it to simultaneous state and parameter estimation of nonlinear state space models. Results of numerical simulation studies illustrate the applicability of this approach.

  • PDF

The Nonlinear State Estimation of the Aircraft using the Adaptive Extended Kalman Filter (적응형 확장 칼만 필터를 이용한 항공기의 비선형 상태추정)

  • Jong Chul Kim;Sang Jong Lee;Anatol A. Tunik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.158-165
    • /
    • 1999
  • 비행시험을 통해 획득한 데이터의 해석과정에서 대상 항공기의 크기가 소형인 경우에는 엔진진동이나 외부의 교란에 의한 잡음이나 바이어스 등의 강도가 높기 때문에 데이터의 처리과정에서 많은 문제점을 산출하게 된다. 이와 같은 문제점을 해결하기 위해 상태추정 알고리즘이 사용되며, 본 논문에서는 항공기의 비선형 세로운동 방정식의 경우에 확장형 칼만 필터를 적용하여 항공기 세로운동의 상태변수들을 추정하였으며, 또한 확률근사과정, 이노베이션에 대한 궤환 적응 등 적응형 칼만 필터를 사용하여 수렴속도와 정확도 둥을 향상시킨 알고리즘을 제안하고 그 결과를 나타내었다.

  • PDF

Analytical and experimental exploration of sobol sequence based DoE for response estimation through hybrid simulation and polynomial chaos expansion

  • Rui Zhang;Chengyu Yang;Hetao Hou;Karlel Cornejo;Cheng Chen
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • Hybrid simulation (HS) has attracted community attention in recent years as an efficient and effective experimental technique for structural performance evaluation in size-limited laboratories. Traditional hybrid simulations usually take deterministic properties for their numerical substructures therefore could not account for inherent uncertainties within the engineering structures to provide probabilistic performance assessment. Reliable structural performance evaluation, therefore, calls for stochastic hybrid simulation (SHS) to explicitly account for substructure uncertainties. The experimental design of SHS is explored in this study to account for uncertainties within analytical substructures. Both computational simulation and laboratory experiments are conducted to evaluate the pseudo-random Sobol sequence for the experimental design of SHS. Meta-modeling through polynomial chaos expansion (PCE) is established from a computational simulation of a nonlinear single-degree-of-freedom (SDOF) structure to evaluate the influence of nonlinear behavior and ground motions uncertainties. A series of hybrid simulations are further conducted in the laboratory to validate the findings from computational analysis. It is shown that the Sobol sequence provides a good starting point for the experimental design of stochastic hybrid simulation. However, nonlinear structural behavior involving stiffness and strength degradation could significantly increase the number of hybrid simulations to acquire accurate statistical estimation for the structural response of interests. Compared with the statistical moments calculated directly from hybrid simulations in the laboratory, the meta-model through PCE gives more accurate estimation, therefore, providing a more effective way for uncertainty quantification.

Quasi-Optimal DOA Estimation Scheme for Gimbaled Ultrasonic Moving Source Tracker (김발형 초음파 이동음원 추적센서 개발을 위한 의사최적 도래각 추정기법)

  • Han, Seul-Ki;Lee, Hye-Kyung;Ra, Won-Sang;Park, Jin-Bae;Lim, Jae-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.276-283
    • /
    • 2012
  • In this paper, a practical quasi-optimal DOA(direction of arrival) estimator is proposed in order to develop a one-axis gimbaled ultrasonic source tracker for mobile robot applications. With help of the gimbal structure, the ultrasonic moving source tracking problem can be simply reduced to the DOA estimation. The DOA estimation is known as one of the representative long-pending nonlinear filtering problems, but the conventional nonlinear filters might be restrictive in many actual situations because it cannot guarantee the reliable performance due to the use of nonlinear signal model. This motivates us to reformulate the DOA estimation problem in the linear robust state estimation setting. Based on the assumption that the received ultrasonic signals are noisy sinusoids satisfying linear prediction property, a linear uncertain measurement model is newly derived. To avoid the DOA estimation performance degradation caused by the stochastic parameter uncertainty contained in the linear measurement model, the recently developed NCRKF (non-conservative robust Kalman filter) scheme [1] is utilized. The proposed linear DOA estimator provides excellent DOA estimation performance and it is suitable for real-time implementation for its linear recursive filter structure. The effectiveness of the suggested DOA estimation scheme is demonstrated through simulations and experiments.

Learning of Differential Neural Networks Based on Kalman-Bucy Filter Theory (칼만-버쉬 필터 이론 기반 미분 신경회로망 학습)

  • Cho, Hyun-Cheol;Kim, Gwan-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.777-782
    • /
    • 2011
  • Neural network technique is widely employed in the fields of signal processing, control systems, pattern recognition, etc. Learning of neural networks is an important procedure to accomplish dynamic system modeling. This paper presents a novel learning approach for differential neural network models based on the Kalman-Bucy filter theory. We construct an augmented state vector including original neural state and parameter vectors and derive a state estimation rule avoiding gradient function terms which involve to the conventional neural learning methods such as a back-propagation approach. We carry out numerical simulation to evaluate the proposed learning approach in nonlinear system modeling. By comparing to the well-known back-propagation approach and Kalman-Bucy filtering, its superiority is additionally proved under stochastic system environments.

A Study on the Storage Life Estimation Method for Decrease of Muzzle Velocity using Gamma Process Model (감마과정 모델을 적용한 포구속도 저하량에 따른 저장수명 예측기법 연구)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.639-645
    • /
    • 2013
  • The aim of the study is to investigate the method to estimate a storage life of propelling charge on the decrease of muzzle velocity by stochastic gamma process model. It is required to establish criterion for state failure to estimate the storage life and it is defined in this paper as a muzzle velocity difference between reference value and maximum allowable standard deviation multiplied by 6. The relationship between storage time and muzzle velocity is investigated by nonlinear regression analysis. The stochastic gamma process model is used to estimated the state distribution and the life distribution for storage time for 155mm propelling charge KM4A2 because the regression analysis is a deterministic method and it can't describe the distribution of life for storage time.

Fuzzy H Filtering for Discrete-Time Nonlinear Markovian Jump Systems with State and Output Time Delays (상태 및 출력 시간지연을 갖는 이산 비선형 마코비안 점프 시스템의 퍼지H 필터링)

  • Lee, Kap Rai
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.6
    • /
    • pp.9-19
    • /
    • 2013
  • This paper deals with fuzzy $H_{\infty}$ filtering problem of discrete-time nonlinear Markovian jump systems with state and output time delays. The purpose is to design fuzzy $H_{\infty}$ filter such that the corresponding estimation error system with time delays and initial state uncertainties is stochastically stable and satisfies an $H_{\infty}$ performance level. A sufficient condition for the existence of fuzzy $H_{\infty}$ filter is given in terms of matrix inequalities. In order to relax conservatism, a stochastic mode dependent fuzzy Lyapunov function is employed. The Lyapunov function not only is dependent on the operation modes of system, but also includes the fuzzy membership functions. An illustrative example is finally given to show the applicability and effectiveness of the proposed method.

Crack identification based on Kriging surrogate model

  • Gao, Hai-Yang;Guo, Xing-Lin;Hu, Xiao-Fei
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.25-41
    • /
    • 2012
  • Kriging surrogate model provides explicit functions to represent the relationships between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for response estimation and parameter identification in structural design and model updating problem. However, little research has been carried out in applying Kriging model to crack identification. In this work, a scheme for crack identification based on a Kriging surrogate model is proposed. A modified rectangular grid (MRG) is introduced to move some sample points lying on the boundary into the internal design region, which will provide more useful information for the construction of Kriging model. The initial Kriging model is then constructed by samples of varying crack parameters (locations and sizes) and their corresponding modal frequencies. For identifying crack parameters, a robust stochastic particle swarm optimization (SPSO) algorithm is used to find the global optimal solution beyond the constructed Kriging model. To improve the accuracy of surrogate model, the finite element (FE) analysis soft ANSYS is employed to deal with the re-meshing problem during surrogate model updating. Specially, a simple method for crack number identification is proposed by finding the maximum probability factor. Finally, numerical simulations and experimental research are performed to assess the effectiveness and noise immunity of this proposed scheme.