• Title/Summary/Keyword: Nonlinear PID controller

Search Result 243, Processing Time 0.025 seconds

A Fuzzy PID Controller Type Autopilot System for Route-Tracking of Ships (선박의 항로추종을 위한 펴지 PID 제어기형 오토파이럿 시스템)

  • Kim, Jong-Hwa;Ha, Yun-Su;Lee, Byung-Kyul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.760-769
    • /
    • 2006
  • This paper proposes an autopilot system using a fuzzy PID controller to satisfy performances required for the automatic navigation of ships under various marine circumstances. The existing autopilot system using a PD type controller has difficulties in eliminating a steady-state error and compensating nonlinear characteristics of ships. The autopilot system using the proposed fuzzy PID controller has a self-tuning ability, an ability to compensate nonlinear characteristics, and an ability to turn at constant angular velocity. Therefore. it can naturally make a steady-state error zero, compensate nonlinear dynamic effect of ships, have an adaptability to parameter variation owing to shallow water effect, and have an ability to turn ship's course rapidly without overshoot through procedures of acceleration, constant, and deceleration of angular velocity for large course-changing.

A Study on the Nonlinear Fuzzy PID Controller with Variable Parameters (가변 파라미터를 갖는 비선형 퍼지 PID 제어기에 관한 연구)

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • This paper proposes a nonlinear fuzzy PID controller with variable parameters to improve slow rising time and divergence occurred by limited input spaces and a resultant limited control input during fuzzification in a fuzzy PID controller with fixed parameters, and describes the design principle and tracking performance of a proposed fuzzy PID controller. The parameters of a proposed controller are adjusted by the stability conditions derived from 'small gain theorem' and satisfy the BIBO stability of overall control system.

A controller Design using Immune Feedback Mechanism (인체 면역 피드백 메카니즘을 활용한 제어기 설계)

  • Park, Jin-Hyun;Kim, Hyun-Duck;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.701-704
    • /
    • 2005
  • PID controllers, which have been widely used in industry, have a simple structure and robustness to modeling error. But They are difficult to have uniformly good control performance in system parameters variation or different velocity command. In this paper, we propose a nonlinear adaptive PID controller based on a cell-mediated immune response and a gradient descent learning. This algorithm has a simple structure and robustness to system parameters variation. To verify performances of the proposed nonlinear adaptive PID controller, the speed control of nonlinear DC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system parameters variation.

  • PDF

Embedded Hardware Implementation of an FPGA Based Nonlinear PID Controller for the ROBOKER Arm (ROBOKER 팔의 제어를 위한 FPGA 기반 비선형 제어기의 임베디드 하드웨어 구현)

  • Kim, Jeong-Seob;Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.12
    • /
    • pp.1153-1159
    • /
    • 2007
  • This paper presents the hardware implementation of nonlinear PID controllers for the ROBOKER humanoid robot arms. To design the nonlinear PID controller on an FPGA chip, nonlinear functions as well as the conventional PID control algorithm have to be implemented by the hardware description language. Therefore, nonlinear functions such as trigonometric or exponential functions are designed on an FPGA chip. Simulation studies of the position control of humanoid arms are conducted and results are compared. Superior performances by the nonlinear PID controllers are confirmed when disturbances are present. Experiments of humanoid robot arm control tasks are conducted to confirm the performance of our hardware design and the simulation results.

Optimal design and real application of nonlinear PID controllers (비선형 PID 제어기의 최적 설계및 실제 적용)

  • Lee, Moon-Yong;Koo, Doe-Gyoon;Lee, Jong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.639-643
    • /
    • 1997
  • This paper presents how nonlinear PID control algorithms can be applied on chemical processes for a more stable operation and perfect automation. A pass balance controller is designed to balance the exiting temperatures of a heater and a heat exchange network. The proposed controller has gain-varying integral action and deals with the operational constraints in an efficient manner. Also, the use of a PID gap controller is proposed to maximize energy saving and operation stability and to minimize operator intervention in operation of air fan coolers. The proposed controller adjusts the opening of a louver automatically in such a way that it keeps the air fan pitch position within the desired range. All these nonlinear PID controllers have been implemented on the distributed control system (DCS) for good reliability and operability. Operator acceptance was very high and the implemented controllers have shown good performance and high service factor still now on. The proposed methodology can be directly applied to similar processes without any modification.

  • PDF

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

Anti-shock Controller Design for Optical Disk Drive Systems with Nonlinear Controller (광디스크 드라이브 시스템을 위한 비선형 제어기를 이용한 Anti-Shock 제어기 설계)

  • Baek, Jong-Shik;Chung, Chung-Choo
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.675-677
    • /
    • 2004
  • This paper presents a nonlinear controller design for optical disk drive systems to improve anti-shock performance. The nonlinear anti-shock controller is added parallel to the original linear servo control loop. In the previous work, dead-zone nonlinear element is used for nonlinear controller and PID control method is used for linear controller. Although this strategy improves anti-shock performance, it has a narrow stability bound. In this paper, we propose dead-zone with saturation nonlinear element for the nonlinear controller. Since this nonlinear element improves stability margin, we can use higher gain of dead-zone than the controller with dead-zone only. In the linear controller design, we show that lead-lag control has improved stability margin over PID control. Numerical simulation results show that the proposed method can get better performance to the external shock than previously proposed method.

  • PDF

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.

T-S fuzzy PID control based on RCGAs for the automatic steering system of a ship (선박자동조타를 위한 RCGA기반 T-S 퍼지 PID 제어)

  • Yu-Soo LEE;Soon-Kyu HWANG;Jong-Kap AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.59 no.1
    • /
    • pp.44-54
    • /
    • 2023
  • In this study, the second-order Nomoto's nonlinear expansion model was implemented as a Tagaki-Sugeno fuzzy model based on the heading angular velocity to design the automatic steering system of a ship considering nonlinear elements. A Tagaki-Sugeno fuzzy PID controller was designed using the applied fuzzy membership functions from the Tagaki-Sugeno fuzzy model. The linear models and fuzzy membership functions of each operating point of a given nonlinear expansion model were simultaneously tuned using a genetic algorithm. It was confirmed that the implemented Tagaki-Sugeno fuzzy model could accurately describe the given nonlinear expansion model through the Zig-Zag experiment. The optimal parameters of the sub-PID controller for each operating point of the Tagaki-Sugeno fuzzy model were searched using a genetic algorithm. The evaluation function for searching the optimal parameters considered the route extension due to course deviation and the resistance component of the ship by steering. By adding a penalty function to the evaluation function, the performance of the automatic steering system of the ship could be evaluated to track the set course without overshooting when changing the course. It was confirmed that the sub-PID controller for each operating point followed the set course to minimize the evaluation function without overshoot when changing the course. The outputs of the tuned sub-PID controllers were combined in a weighted average method using the membership functions of the Tagaki-Sugeno fuzzy model. The proposed Tagaki-Sugeno fuzzy PID controller was applied to the second-order Nomoto's nonlinear expansion model. As a result of examining the transient response characteristics for the set course change, it was confirmed that the set course tracking was satisfactorily performed.