• 제목/요약/키워드: Nonlinear PID controller

검색결과 243건 처리시간 0.035초

신경회로망 보상기를 갖는 비선형 PID 제어기 (Nonlinear PID Controller with Neural Network based Compensator)

  • 이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권5호
    • /
    • pp.225-234
    • /
    • 2000
  • In this paper, we present an nonlinear PID controller with network based compensator which consists of a conventional PID controller that controls the linear components and neuro-compensator that controls the output errors and nonlinear components. This controller is based on the Harris's concept where he explained that the adaptive controller consists of the PID control term and the disturbance compensating term. The resulting controller's architecture is also found to be very similar to that of Wang's controller. This controller adds a self-tuning ability to the existing PID controller without replacing it by compensating the output errors through the neuro-compensator. Various simulations and comparative studies have proven that the proposed nonlinear PID controller produces superior results to other existing PID controllers. When applied to an actual magnetic levitation system which is known to be very nonlinear, it has also produced an excellent results.

  • PDF

면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계 (Design of Nonlinear PID Controller Based on Immune Feedback Mechanism)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.

세포성 면역 반응을 이용한 비선형 PID 제어기 설계에 관한 연구 (A Study on Nonlinear PID Controller Design Using a Cell-Mediated Immune Response)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권5호
    • /
    • pp.259-267
    • /
    • 2003
  • In this paper, we propose a nonlinear variable PID controller using a cell-mediated immune response. An immune feedback response is based on the functioning of biological T-cells. An immune feedback response and P-controller of conventional PID controllers resemble each other in role and mechanism. Therefore, we extend immune feedback mechanism to nonlinear PE controller. And in order to choose the optimal nonlinear PID controller games, we also propose the on-line tuning algorithm of nonlinear functions parameters in immune feedback mechanism. The trained parameters of nonlinear functions are adapted to the variations of the system parameters and any command velocity. And the adapted parameters obtained outputs of nonlinear functions with an optimal control performance. To verify performances of the proposed control systems, the speed control of nonlinear BC motor is performed. The simulation results show that the proposed control systems are effective in tracking a command velocity under system variations.

퍼지 PID 제어 기법을 이용한 비선형 유압시스템의 제어 (Nonlinear Hydraulic System Control Using Fuzzy PID Control Technique)

  • 박장호;김종화;류기석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.69-69
    • /
    • 2000
  • Control systems using a hydraulic cylinder as an actuator are modeled to a nonlinear system owing to varying of moments and nonlinearities of hydraulic itself. In this paper, we want to control nonlinear hydraulic systems by adopting the fuzzy PID control technique which include nonlinear time varying control parameters. To do this, we propose the design method of fuzzy Pm controller and in order to assure effectiveness of fuzzy PID controller, computer simulations were executed for the control system.

  • PDF

Stability Analysis and Proposal of a Simple Form of a Fuzzy PID Controller

  • Lee, Byung-Kyul;Kim, In-Hwan;Kim, Jong-Hwa
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권8호
    • /
    • pp.1299-1312
    • /
    • 2004
  • This paper suggests the simple form of a fuzzy PID controller and describes the design principle, tracking performance, stability analysis and changes of parameters of a suggested fuzzy PID controller. A fuzzy PID controller is derived from the design procedure of fuzzy control. It is well known that a fuzzy PID controller has a simple structure of the conventional PID controller but posses its self-tuning control capability and the gains of a fuzzy PID controller become nonlinear functions of the inputs. Nonlinear calculation during fuzzification, defuzzification and the fuzzy inference require more time in computation. To increase the applicability of a fuzzy PID controller to digital computer, a simple form of a fuzzy PID controller is introduced by the backward difference mapping and the analysis of the fuzzy input space. To guarantee the BIBO stability of a suggested fuzzy PID controller, ‘small gain theorem’ which proves the BIBO stability of a fuzzy PI and a fuzzy PD controller is used. After a detailed stability analysis using ‘small gain theorem’, from which a simple and practical method to decide the parameters of a fuzzy PID controller is derived. Through the computer simulations for the linear and nonlinear plants, the performance of a suggested fuzzy PID controller will be assured and the variation of the gains of a fuzzy PID controller will be investigated.

비선형 퍼지 PID 제어기의 성능 개선에 관한 연구 (A Study on the Performance Improvement of a Nonlinear Fuzzy PID Controller)

  • 김인환;이병결;김종화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.852-861
    • /
    • 2003
  • In this paper, in order to improve the disadvantages of the fixed design-parameter fuzzy PID controller. a new fuzzy PID controller named a variable design-parameter fuzzy PID controller is suggested. The main characteristic of the suggested controller is to adjust design-parameters of the controller by comparing magnitudes between fuzzy controller inputs at each sampling time when controller inputs are measured. As a result. all fuzzy input partitioned spaces converge within a time-varying normalization scale. and the resultant PID control action can always be applied precisely regardless of operating input magnitudes. In order to verify the effectiveness of the suggested controller. several a computer simulations for a nonlinear system are executed and the control parameters of the variable design-parameter fuzzy PID controller are throughly analyzed.

신경 회로망 기반 퍼지형 PID 제어기 설계 (Neural Network based Fuzzy Type PID Controller Design)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF

신경회로망 기반 자기동조 퍼지 PID 제어기 설계 (Design of a Neural Network Based Self-Tuning Fuzzy PID Controller)

  • 임정흠;이창구
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.22-30
    • /
    • 2001
  • This paper describes a neural network based fuzzy PID control scheme. The PID controller is being widely used in industrial applications. However, it is difficult to determine the appropriated PID gains in nonlinear systems and systems with long time delay and so on. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based self tuning fuzzy PID controller of which output gains were adjusted automatically. The tuning parameters of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods. Then they were adjusted by using proposed neural network learning algorithm. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The experiment on the magnetic levitation system, which is known to be heavily nonlinear, showed the proposed controller's excellent performance.

  • PDF

신경회로망 기반 비선형 다변수 자기동조 PID 제어기의 설계 (Design of a nonlinear Multivariable Self-Tuning PID Controller based on neural network)

  • 조원철
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.1-10
    • /
    • 2007
  • 본 논문에서는 비선형 다변수 시스템에 적응할 수 있는 신경회로망을 이용한 PID 구조를 갖는 직접 다변수 자기동조 제어기를 제안한다. 제어기에 적용되는 플랜트는 잡음, 시간지연과 상호결합항이 존재하며 파라미터가 변하는 비선형 다변수 시스템이다. 비선형 다변수 시스템은 선형부분과 비선형부분으로 분리한 형태로 구성되며, 선형제어기는 외부환경 변화에 적응할 수 있는 PID 제어기 특성을 가진 자기동조 PID 제어기 이다. 선형부분의 제어기 파라미터는 순환최소자승법으로 직접 추정하고 비선형 부분의 파라미터는 신경회로망으로 추정한다. 그리고 각 부분에서 추정한 파라미터를 합한 후 비선형 다변수 일반화 자기동조 제어기의 제어법칙에 적용한다. 제어 알고리듬의 타당성을 확인하기 위해 시간 지연이 있고 일정한 시간이 경과한 후 시스템의 파라미터가 변하는 비선형 다변수 시스템에 대해 컴퓨터 시뮬레이션을 하였다. 또한 기존의 신경회로망을 이용한 직접 다변수 적응 제어기에 비해 효과적이다.

무인항공기의 내풍성 강화를 위한 제어기의 외란관측기 연구 (Disturbance Observer based PID Controller for robustness enhancement of UAVs under the presence of wind disturbance)

  • 오승조;이동진
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.61-67
    • /
    • 2018
  • This paper presents a method to apply disturbance observer to PID controller for robustness enhancement of UAVs. The system uncertainties and disturbances bring adverse effects on performance and stability of UAVs. In this paper, we estimate the acceleration disturbances using nonlinear disturbance observer, then compensate disturbances with composite controller. By employing nonlinear disturbance observer and composite controller, we have better performance and robustness than conventional PID controller. The asymptotical stability of nonlinear disturbance observer is presented through theoretical analysis. The estimation performance of nonlinear disturbance observer is evaluated by numerical simulation. And performance of disturbance observer based PID controller is evaluated by comparing the performance with conventional PID controller.