• Title/Summary/Keyword: Nonlinear Joint

Search Result 449, Processing Time 0.026 seconds

Multiobjective size and topolgy optimization of dome structures

  • Tugrul, Talaslioglu
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.795-821
    • /
    • 2012
  • The size and topology of geometrically nonlinear dome structures are optimized thereby minimizing both its entire weight & joint (node) displacements and maximizing load-carrying capacity. Design constraints are implemented from provisions of American Petroleum Institute specification (API RP2A-LRFD). In accordance with the proposed design constraints, the member responses computed by use of arc-length technique as a nonlinear structural analysis method are checked at each load increment. Thus, a penalization process utilized for inclusion of unfeasible designations to genetic search is correspondingly neglected. In order to solve this complex design optimization problem with multiple objective functions, Non-dominated Sorting Genetic Algorithm II (NSGA II) approach is employed as a multi-objective optimization tool. Furthermore, the flexibility of proposed optimization is enhanced thereby integrating an automatic dome generating tool. Thus, it is possible to generate three distinct sphere-shaped dome configurations with varying topologies. It is demonstrated that the inclusion of brace (diagonal) members into the geometrical configuration of dome structure provides a weight-saving dome designation with higher load-carrying capacity. The proposed optimization approach is recommended for the design optimization of geometrically nonlinear dome structures.

Dynamic Analysis Of Structures With Nonlinear Joints By Using Substructure Synthesis Method (부분구조 합성법을 이용한 비선형 결합부 구조물의 동적 해석)

  • 이신영;이장무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.324-330
    • /
    • 1990
  • In this study, in order to perform dynamic design of machine tools reasonably and effectively, a method was formulated to be applicable to the damped structures connected by joints having elasticity and damping by using substructure synthesis method. And a nonlinear solution method was proposed and it formulates the nonlinear parts by describing functions and uses the reducing transformation matrix by the substructure synthesis method. The results of frequency response analysis of a machine tool, where an NC lathe was partitioned by three parts of spindle, housing and bed-base part and the nonlinearity of bearing parts between spindle and housing was modelled, showed force dependency of the response.

Robust Control of Robot Manipulator with Actuators

  • Jongguk Yim;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.320-326
    • /
    • 2001
  • A Robust controller is designed for cascaded nonlinear uncertain systems that can be decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such as a robot manipulator with actuators. For such systems, a recursive design is used to include the second subsystem in the robust control. The recursive design procedure contains two steps. First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an independent control. As the fictitious control, a nonlinear H(sub)$\infty$ control using energy dissipation is designed in the sense of L$_2$-gain attenuation from the disturbance caused by system uncertainties to performance vector. Second, the actual robust control is designed recursively by Lyapunovs second method. The designed robust control is applied to a robotic system with actuators, is which the physical control inputs are not the joint torques, but electrical signals to the actuators.

  • PDF

Nonlinear Observer for One-Link Flexible Robot Arm (단일관절 유연성 로보트 팔에 대한 비선형 관측기)

  • 임규만;안봉만
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.183-187
    • /
    • 2003
  • When a flexible arm is rotated by a motor about an axis through the arm's fixed end, transverse vibration may occur. The motor torque should be controlled in such a way that the motor rotates by a specified angle, while simultaneously stabilizing vibration of the flexible arm so that it is arrested at the end of rotation. In this paper, we propose nonlinear observer for one-link flexible am. Then based on the error dynamic equation between the plant dynamic equation and the nonlinear observer dynamic equation of the flexible one-link am, Lyapunov candidate function is applied to achieve a stable deterministic nonlinear feedback controller for the regulation of joint angle.

  • PDF

Design of the High Gain Nonlinear Feedback Linearizing Control. (고이득 제어를 이용한 비선형 궤환 선형화 제어기개발.)

  • Lee, Ju-Suk;Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.930-932
    • /
    • 1996
  • Some results and a nonlinear controller are proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear subsystem with unknown parameter and it can be stabilized using the high gain nonlinear feedback linearizing controller. As an example for the proposed theorem, we introduce the single link robot with joint flexibility which is an well known example.

  • PDF

Chaos Analysis of Major Joint Motions for Women during Treadmill Walking (트레드밀 보행시 여성의 주요 관절 운동에 대한 카오스 분석)

  • Kim, Min-Kyoung;Son, Kwon;Park, Jung-Hong;Seo, Kuk-Woong;Park, Young-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.130-136
    • /
    • 2008
  • The purpose of this study was to investigate chaotic characteristics of major joint motions during treadmill walking. Gait experiments were carried out for 20 healthy young women. The subjects were asked to walk on a treadmill at their own natural speeds. The chaos analysis was used to quantify nonlinear motions of eleven major joints of each woman. The joints analyzed included the neck and the right and left shoulders, elbows, hips, knees and ankles. The recorded gait patterns were digitized and then coordinated by motion analysis software. Lyapunov exponent for every joint was calculated to evaluate joint characteristics from a state space created by time series and its embedding dimension. This study shows that differences in joint motion were statistically significant.

Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method

  • Girao Coelho, Ana M.;Simoes da Silva, Luis;Bijlaard, Frans S.K.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.33-53
    • /
    • 2006
  • The rotational behaviour of bolted extended end plate beam-to-column connections is evaluated in the context of the component method. The full moment-rotation response is characterized from the force-deformation curve of the individual joint components. The deformability of end plate connections is mostly governed by the bending of the column flange and/or end plate and tension elongation of the bolts. These components form the tension zone of the joint that can be modelled by means of "equivalent T-stubs". A systematic analytical procedure for characterization of the monotonic force-deformation behaviour of individual T-stub connections is proposed. In the framework of the component method, the T-stub is then inserted in the joint spring model to generate the moment-rotation response of the joint. The procedures are validated with the results from an experimental investigation of eight statically loaded extended end plate bolted moment connections carried out at the Delft University of Technology. Because ductility is such an important property in terms of joint performance, particularly in the partial strength joint scenario, special attention is given to this issue.

Dynamic Threshold Model of Spasticity that Can Predict Various Pendulum Motions (다양한 진자운동을 재현가능한 경직의 동적 역치 모델)

  • Kim Chul-Seung;Kong Se-Jin;Kwon Sun-Duck;Kim Jong-Moon;Eom Gwang-Moon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.152-158
    • /
    • 2006
  • The objective of this work is to develop the knee joint model for representing various pendulum motions and quantifying the spasticity. Knee joint model included the extension and flexion muscles. The joint moment consists of both the active moment from the stretch reflex and the passive moment from the viscoelastic joint properties. The stretch reflex was modeled as nonlinear feedback of muscle length and the muscle lengthening velocity, which is Physiologically-feasible. Moreover, we modeled the spastic reflex as having dynamic threshold to account far the various pendulum trajectories of spastic patients. We determined the model parameters of three patients who showed different pendulum trajectories through minimization of error between experimental and simulated trajectories. The simulated joint trajectories closely matched with the experimental ones, which show the proposed model can predict pendulum motions of patients with different spastic severities. The predicted muscle force from spastic reflex appeared more frequently in the severe spastic patient, which indicates the dynamic threshold relaxes slowly in this patient as is manifested by the variation coefficient of dynamic threshold. The proposed method provides prediction of muscle force and intuitive and objective evaluation of spasticity and it is expected to be useful in quantitative assessment of spasticity.

A study on the driver and controller design of the biped robot (이족보행로보트의 구동부 및 제어부의 설계에 관한 연구)

  • Shim, In-Sup;Kim, Ju-Han;Kim, Dong-Jun;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.871-873
    • /
    • 1995
  • The purpose of this paper is to design and construct the compact type joint driver and controller of the biped robot. This biped robot will be designed to be suitable for the practical usages and applications in the work environment, which is not plat floor, like a stairs by taking the stand-alone style that equipped all the parts except power sources. Generally, highly nonlinear motion dynamics of the biped robot is realized to linear approximations by installing a high-ratio speed reducer at each joint and dividing motions into a several piecewise linear motions, which is realized by the digital controller design techniques. This biped robot has symmetrical structure to get the stable walking ability and also the hierachical structure to control each joint as well. That is, all of the joint controllers are connected to the main controller in the composition of overall controllers. The driver and controller of each joint uses PI controller that compensate the velocity and position errors by the data of the encoder. And the signal characteristics of each joint controller forms a trapezoid speed profile which is predefined by the values of direction, maximum velocity and position.

  • PDF

Study on mechanical behaviors of column foot joint in traditional timber structure

  • Wang, Juan;He, Jun-Xiao;Yang, Qing-Shan;Yang, Na
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.1-14
    • /
    • 2018
  • Column is usually floating on the stone base directly with or without positioning tenon in traditional Chinese timber structure. Vertical load originated by the heavy upper structure would induce large friction force and compression force between interfaces of column foot and stone base. This study focused on the mechanical behaviors of column foot joint with consideration of the influence of vertical load. Mechanism of column rocking and stress state of column foot has been explored by theoretical analysis. A nonlinear finite element model of column foot joint has been built and verified using the full-scale test. The verified model is then used to investigate the mechanical behaviors of the joint subjected to cyclic loading with different static vertical loads. Column rocking mechanism and stress distributions of column foot were studied in detail, showing good agreement with the theoretical analysis. Mechanical behaviors of column foot joint and the effects of the vertical load on the seismic behavior of column foot were studied. Result showed that compression stress, restoring moment and stiffness increased with the increase of vertical load. An appropriate vertical load originated by the heavy upper structure would produce certain restoring moment and reset the rocking columns, ensuring the stability of the whole frame.