• Title/Summary/Keyword: Nonlinear Inertia Term

Search Result 12, Processing Time 0.024 seconds

Sliding mode control of manipulator whose nonlinear components are regarded as external disturbance (비선형 성분을 외한으로 간주했을때의 매니퓰레이터의 슬라이딩 모드제어)

  • ;Aoshima, Nobuharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.286-291
    • /
    • 1991
  • This paper discusses sliding made control of robot manipurators assuming that nonlinear terms, which are inertia term, Coriolis force term and centrifugal taffn, are external disturbances. We obtained the unknown parameter of its linear terms by Signal Compression Method. We propose a new control input algorithm to decrease chattering in the application of sliding mode control of manipulator whose nonlinear components are regarded as disturbances. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by obtaining a quick switching speed.

  • PDF

A study on a multi-input time control of multi-joint manipulator using sliding mode (슬라이딩 모드를 이용한 다관절 매니퓰레이터의 다입력 실시간 제어에 관한 연구)

  • 이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.652-657
    • /
    • 1992
  • This paper presents to accomplish successfully a multi-input real time control by applying control hierarchy for sliding mode of multi-joint manipulators whose nonlinear terms are regarded as disturbances. We- could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that nonlinear terms, which are Inertia term, gravity force term, Coriolis force term and centrifugal force term, are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode of multi-input system. We proposed a new control input algorithm in order to decrease chattering by changing control input according as effect of disturbance if a control response become within allowance error range. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by time delay of calculation and to carry out real time control.

  • PDF

Nonlinear Vibration Phenomenon for the Slender Rectangular Cantilever Beam (얇은 직사각형 외팔보의 비선형 진동현상)

  • Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1314-1321
    • /
    • 2004
  • The non-linear responses of a slender rectangular cantilever beam subjected to lateral harmonic base-excitation are investigated by the 2-channel FFT analyzer. Both linear and nonlinear behaviors of the cantilever beam are compared with each other. Bending mode, torsional mode, and transverse mode are coupled in such a way that the energy transfer between them are observed. Especially, superharmonic, subharmonic, and chaotic motions which result from the unstable inertia terms in the transverse mode are analyzed by the FFT analyzer The aim is to give the explanations of the route to chaos, i.e., harmonic motion \longrightarrow superharmonic motion \longrightarrow subharmonic motion \longrightarrow chaos.

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

Study on Real Time Control of Robot Manipulator Using Sliding Mode (슬라이딩 모드를 이용한 로보트 매니퓰레이터의 실시간 제어에 관한 연구)

  • ;靑島伸治
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2011-2020
    • /
    • 1992
  • This paper discusses about real time control applying sliding mode to robot manipulators whose nonlinear terms, which are inertia term, Corilis term and centrifugal force mterm, are regarded as disturbances. We could simplify the dynamic equations of a manipulator and servo system, which are composed of linear elements and nonlinear elements, by assuming that non-linear terms are external disturbance. By simplifying that equation, we could easily obtain a control input which satisfy sliding mode. We proposed a new control input algorithm to decrease chattering in the application of sliding mode control of manipulator whose nonlinear elements are regarded as disturbances. We could take impulse response of linear elements of dynamic equations of a robot manipulator and servo system by Signal Compression Method. So then, we could obtain the unknown parametes of its linear lements, which are used to obtain switching parameter satisfying sliding mode, by Signal Compression Method. In this experiments, we used DSP(Digital Signal Processor) controller to suppress chattering by obtaining a switching speed and to carry out real time control.

Embedded Kalman Filter Design Using FPGA for Estimating Acceleration of a Time-Delayed Controller for a Robot Arm (로봇 팔의 시간지연제어기의 가속도 평가를 위한 Kalman 필터의 FPGA 임베디드 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • In this paper, an embedded Kalman filter for a time-delayed controller is designed on an FPGA to estimate accelerations of the robot arm. When the time-delayed controller is used as a controller, the inertia estimation along with accelerations is needed to form the control law. Although the time-delayed controller is known to be robust to cancel out uncertainties in the nonlinear systems, performances are very much dependent upon estimating the acceleration term ${\ddot{q}}(t-{\lambda})$ along with inertia estimation ${\hat{D}}(t-{\lambda})$. Estimating accelerations using the finite difference method is quite simple, but the accuracy of estimation is poor specially when the robot moves slowly. To estimate accelerations more accurately, various filters such as the least square fit filter and the Kalman filter are introduced and implemented on an FPGA chip. Experimental studies of following the desired trajectory are conducted to show the performance of the controller. Performances of different filters are investigated experimentally and compared.

A New Method for the Identification of Joint Mechanical Properties (관절계 역학적 특성의 정량적 평가방법)

  • 엄광문;김석주;한태륜
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.209-218
    • /
    • 2004
  • The purpose of this paper is to suggest a practical and simple method for the identification of the joint mechanical properties and to apply it to human knee joints. The passive moment at a joint was modeled by three mechanical parts, that is, a gravity term, a linear damper term and a nonlinear spring term. Passive pendulum tests were performed in 5 fat and 5 thin men. The data of pendulum test were used to identify the mechanical properties of joints through sequential quadratic programming (SQP) with random initial values. The identification was successful where the normalized root-mean-squared (RMS) errors between the simulated and experimental joint angle trajectories were less than 10%. The parameter values of mechanical properties obtained in this study agreed with literature. The inertia, gravity and the damping constant were greater at fat men, which indicates more resistance to body movement and more energy consumption fer fat men. The suggested method is noninvasive and requires simple setup and short measurement time. It is expected to be useful in the evaluation of joint pathologies.

The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker (파형의 왜도가 투과성 방파제 투과율에 미치는 영향)

  • Cho, Yong Jun;Kang, Yoon Koo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.6
    • /
    • pp.369-381
    • /
    • 2017
  • It has been presumed that highly nonlinear skewed waves frequently observed in a surf zone could significantly influence the transmission behaviour via a porous wave breaker due to its larger inertia force than its nonlinear counterparts of zero skewness [Cnoidal waves]. In this study, in order to confirm this perception, a numerical simulation has been implemented for 6 waves the skewness of that range from 1.02 to 1.032. A numerical simulation are based on the Tool Box called as the ihFoam that has its roots on the OpenFoam. Skewed waves are guided by the shoal of 1:30 slope, and the flow in the porous media are analyzed by adding the additional damping term into the RANS (Reynolds Averaged Navier-Stokes equation). Numerical results show that the highly nonlinear skewed waves are of higher transmitted ratio than its counterparts due to its stronger inertia force. In this study, in order to see whether or not the damping at the porous structure has an effect on the wave celerity, we also derived the dispersive relationships of Nonlinear Shallow Water Eq. [NSW] with damping at the porous structure being accounted. The newly derived dispersive relationships shows that the phase lag between the damping friction and the free surface elevation due to waves significantly influence the wave celerity.

Servo control system of electrostatic micro-actuator for micro robots

  • Sim, Kwee-Bo;Hashimoto, Hideki;Fujita, Hiroyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.964-968
    • /
    • 1988
  • In mechanical systems in which the dynamics of armatures is dominated by electrostatic forces, motions will generally be unstable. This paper deals with the control problems of this kind of micro electrostatic device systems. In these systems, the mass of micro mechanical parts is so small that the inertia term in the equation of motion is negligible. However, nonlinear terms, such as friction and driving force, become dominant. The purpose of this paper is to realize the stable motion without delay and, overshoot etc. A micro-mechanical system used in this paper consists of a plane wafer with striped electrodes converted with an insulation layer and thin cylindrical roller is placed over on it. The performance of motions is confirmed by some simulations.

  • PDF