• Title/Summary/Keyword: Nonlinear Friction

Search Result 508, Processing Time 0.031 seconds

Position Control of Sliding Mode Control Systems with Compensation of Estimated Coulomb friction (추정된 쿨롱 마찰을 보상한 슬라이딩 모드 제어 시스템의 위치제어)

  • 김한메;최정주;이영진;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.35-42
    • /
    • 2004
  • The control systems with friction cause the steady state error and slow response, because friction is a sensitive to the change of system condition and has highly nonlinear characteristics. To overcome these problems and do precise position control for a ball-screw system, we use Coulomb friction estimator and the sliding mode control(SMC) to compensate its negative effect. The applied SMC for tracking position has a characteristics of robust stability and reducing chattering, and is derived from the Lyapunov stability theorem and reaching condition. Compensating the estimated friction torque to the bounded disturbance term of the SMC's equivalent control input, it has a tracking performance better than the PID from the experimental results.

Precise Control of Ball-Screw Systems with Friction (마찰을 고려한 볼-스크류 시스템의 정밀 제어)

  • 김종식;한성익;공준희;신대왕
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.3
    • /
    • pp.93-101
    • /
    • 2002
  • The effect of nonlinear friction in the low velocity is dominant in precise controlled mechanisms and it is difficult to identify the friction effect. The friction model which Canudas suggested so called, LuGre model is well expressed the friction effect as Streibeck in the law velocity. But it\`s model parameters were estimated continuously in operation for precise control. This paper suggests the sliding mode controller and observer for compensating the friction effect. Experimental results for a ball-screw system show that the proposed method has a good performance especially in the low velocity.

Quadrant Protrusion error Modeling Through the Identification of Friction (마찰력 규명을 통한 상한절환 오차 모델링)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

A Program Development for Prediction of Negative Skin Friction on Piles by Consolidation Settlement (압밀침하를 고려한 말뚝의 부마찰력 예측 프로그램 개발)

  • Kim, Hyeong-Joo;Mission, Jose Leo C.
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.5-17
    • /
    • 2009
  • The microcomputer program PileNSF (Pile Negative Skin Friction) is developed by the authors in a graphical user interface (GUI) environment using $MATLAB^{(R)}$ for predicting the bearing capacity of a pile embedded in a consolidating ground by surcharge loading. The proposed method extends the one-dimensional soil-pile model based on the nonlinear load transfer method in OpenSees to perform an advanced one-dimensional consolidation settlement analysis based on finite strain. The developed program has significant features of incorporating Mikasa's finite strain consolidation theory that accounts for reduction in the thickness of the clay layer as well as the change of the soil-pile interface length during the progress of consolidation. In addition, the consolidating situation of the ground by surcharge filling after the time of pile installation can also be considered in the analysis. The program analysis by the presented method has been verified and validated with several case studies of long-term test on single piles subjected to negative skin friction. Predicted results of negative skin friction (downdrag and dragload) as a result of long from consolidation settlement are shown to be in good agreement with measured and observed case data.

Performance Analysis of High-Speed Ceramic Ball Bearings Under Thrust Loads in EHD Lubrication (축방향 하중을 받는 고속 세라믹 볼베어링에 대한 EHD 윤활영역에서의 성능 해석)

  • 반종억;김경웅
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.26-34
    • /
    • 1998
  • This paper presents a high-speed performance analysis of ball bearings with ceramic balls under thrust loads. The sliding velocity profiles between a ball and raceways were obtained by the 3-D quasi-dynamic equations of motion including both centrifugal force and gyroscopic moment derived by vector matrix algebra. The friction at the contact areas was obtained by the Bair-Winer's non-Newtonian rheological model and the Hamrock-Dowson's central film thickness in EHL analysis. The nonlinear equations were solved by the Newton-Raphson method and the underrelaxation iterative method. The friction torques and ball behaviors with various loads, ball materials, and contact angles were predicted by this model. It was shown that the friction torque was sensitive to thrust load and contact angle, and that the friction torque and the pitch angle of the bearing with ceramic balls are smaller than those of the bearing with steel balls.

Equivalent Damping Ratio of the Inelastic SDOF Structures with Friction Damper (마찰감쇠기가 설치된 비선형 단자유도 건물의 등가감쇠비)

  • 김형섭;민경원;이상현;박지훈;문병욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.492-499
    • /
    • 2004
  • The purpose of this paper is to present a design procedure of coulomb friction dampers for controlling elastic and inelastic responses of building structures. The equivalent damping and frequency increased by the friction damper are estimated using ATC-40 and ATC-55 procedures which provide equivalent linear system for bilinear one, and then a design formula to achieve target performance response level by friction damper is presented. It is identified that there exists error between the responses obtained by this formula and by performing nonlinear analysis and the features of the error vary according to the hardening ratio, yield strength ratio, and structural period. Equations for compensating this er개r are reposed based on the least square method, and the results from numerical analyses indicate that the error is significantly reduced, and the proposed formula can be used without much error for designing coulomb friction damper for retrofitting a structure showing elastic or inelastic behavior.

  • PDF

3 DOF Nonlinear Analysis of Friction-Induced Vibration with Misalignment (정렬불량을 갖는 마찰진동계의 3 자유도 비선형 해석)

  • 배철용;최연선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.79-84
    • /
    • 2001
  • The motivation behind this work is to understand the phenomenon of friction-induced vibration and squeal due to misalignment. In present paper, it is studied on effect of misalignment between friction-induced vibration and squeal by an experiment using a pin-on-disk type experimental apparatus. In order to build an analytical model of the friction-induced vibration system with misalignment, the system is modeled as a single-DOF and 3-DOF system. The results show that the single DOF system can only show stick/slip phenomenon, but the 3-DOF system can show squeal due to misalignment. Consequently, it can be said that the misalignment in a friction-induced vibration system is a source of squeal noise.

  • PDF

Robust Adaptive Control of Autonomous Robot Systems with Dynamic Friction Perturbation and Its Stability Analysis (동적마찰 섭동을 갖는 자율이동 로봇 시스템의 강인적응제어 및 안정성 해석)

  • Cho, Hyun-Cheol;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents a robust adaptive control method using model reference control strategy against autonomous robot systems with random friction nature. We approximate a nonlinear robot system model by means of a feedback linearization approach to derive nominal control law. We construct a Least Square (LS) based observer to estimate friction dynamics online and then represent a perturbed system model with respect to approximation error between an actual friction and its estimation. Model reference based control design is achieved to implement an auxiliary control in order for reducing control error in practice due to system perturbation. Additionally, we conduct theoretical study to demonstrate stability of the perturbed system model through Lyapunov theory. Numerical simulation is carried out for evaluating the proposed control methodology and demonstrating its superiority by comparing it to a traditional nominal control method.

A Design of Adaptive Controller for Transportation System with Dynamic Friction

  • Lee, Jin-Woo;Seo, Jeon-Hyun;Han, Seung-Hoon;Lee, Kwon-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.199-204
    • /
    • 2006
  • In this paper, we propose an adaptive control algorithm to improve the position accuracy and reduce the nonlinear friction effects for linear motion servo system. Especially, the considered system includes not only the variation of the mass of the mover but also the friction change by the normal force. To adapt to these problems, we designed the controller with the mass estimator and the compensator by observing the variation of normal force. Finally, the numerical simulation results are presented in order to show the effectiveness of the proposed method to improve the position accuracy compared to other control methods.

  • PDF