• Title/Summary/Keyword: Nonlinear Filter

Search Result 745, Processing Time 0.03 seconds

Hybrid Adaptive Volterra Filter Robust to Nonlinear Distortion

  • Kwon, Oh-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3E
    • /
    • pp.95-103
    • /
    • 2008
  • In this paper, the new hybrid adaptive Volterra filter was proposed to be applied for compensating the nonlinear distortion of memoryless nonlinear systems with saturation characteristics. Through computer simulations as well as the analytical analysis, it could be shown that it is possible for both conventional Volterra filter and proposed hybrid Volterra filter, to be applied for linearizing the memoryless nonlinear system with nonlinear distortion. Also, the simulations results demonstrated that the proposed hybrid filter may have faster convergence speed and better capability of compensating the nonlinear distortion than the conventional Volterra filter.

Design of Nonlinear Fixed-interval Smoother for Off-line Navigation (오프라인 항법을 위한 비선형 고정구간 스무더 설계)

  • 유재종;이장규;박찬국;한형석
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.984-990
    • /
    • 2002
  • We propose a new type of nonlinear fixed interval smoother to which an existing nonlinear smoother is modified. The nonlinear smoother is derived from two-filter formulas. For the backward filter. the propagation and the update equation of error states are derived. In particular, the modified update equation of the backward filter uses the estimated error terms from the forward filter. Data fusion algorithm, which combines the forward filter result and the backward filter result, is altered into the compatible form with the new type of the backward filter. The proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing algorithm to off-line navigation system and show the proposed algorithm estimates position, and altitude fairly well through the computer simulation.

Robust Nonlinear H$\infty$ FIR Filtering for Time-Varying Systems

  • Ryu, Hee-Seob;Son, Won-Kee;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-181
    • /
    • 2000
  • This paper investigates the robust nonlinear H$_{\infty}$ filter with FIR(Finite Impulse Response) structure for nonlinear discrete time-varying uncertain systems represented by the state-space model having parameter uncertainty. Firstly, when there is no parameter uncertainty in the system, the discrete-time nominal nonlinear H$_{\infty}$ FIR filter is derived by using the equivalence relationship between the FIR filter and the recursive filter, which corresponds to the standard nonlinear H$_{\infty}$ filter. Secondly, when the system has the parameter uncertainty, the robust nonlinear H$_{\infty}$ FIR filter is proposed for the discrete-time nonlinear uncertain systems.

  • PDF

Design of Nonlinear Fixed-Interval Smoothing Filter and Its Application to SDINS

  • Yu, Jae-Jong;Lee, Jang-Gyu;Hong, Hyun-Su;Han, Hyung-Seok;Park, Chan-Gook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.177.4-177
    • /
    • 2001
  • In this paper, we propose a new type of nonlinear fixed interval smoothing filter which is modified from the existing nonlinear smoothing filter. A nonlinear smoothing filter is derived from two-filter formulas. For the backward filter, the propagation and update equation of error states are derived. Particularly the modified update equation of the backward filter use the estimated error terms from the forward filter. Smoothing algorithm is altered into the compatible form with the new type of the backward fitter. An advantage of the proposed algorithm is more efficient than the existing one because propagation in backward filter is very simple from the implementation point of view. We apply the proposed nonlinear smoothing ...

  • PDF

An Extended Kalman Filter Robust to Linearization Error (선형화 오차에 강인한 확장칼만필터)

  • Hong, Hyun-Su;Lee, Jang-Gyu;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • In this paper, a new-type Extended Kalman Filter (EKF) is proposed as a robust nonlinear filter for a stochastic nonlinear system. The original EKF is widely used for various nonlinear system applications. But it is fragile to its estimation errors because they give rise to linearization errors that affect the system mode1 as the modeling errors. The linearization errors are nonlinear functions of the estimation errors therefore it is very difficult to obtain the accurate error covariance of the EKF using the linear form. The inaccurately estimated error covariance hinders the EKF from being a sub-optimal estimator. The proposed filter tries to obtain the upper bound of the error covariance tolerating the uncertainty of the error covariance instead of trying to obtain the accurate one. It treats the linearization errors as uncertain modeling errors that can be handled by the robust linear filtering. In order to be more robust to the estimation errors than the original EKF, the proposed filter minimizes the upper bound like the robust linear filter that is applied to the linear model with uncertainty. The in-flight alignment problem of the inertial navigation system with GPS position measurements is a good example that the proposed robust filter is applicable to. The simulation results show the efficiency of the proposed filter in the robustness to initial estimation errors of the filter.

Time Domain Identification of nonlinear Structural Dynamic Systems Using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 비선형 동적 구조계의 시간영역 규명기법)

  • 윤정방
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.180-189
    • /
    • 2001
  • In this study, recently developed unscented Kalman filter (UKF) technique is studied for identification of nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter identification by introducing the state vector augmented with the unknown parameters to be identified. However, the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly nonlinear systems.

  • PDF

Time Domain Identification of Nonlinear Structural Dynamic Systems Using Unscented Kalman Filter (Unscented Kalman Filter를 이용한 비선형 동적 구조계의 시간영역 규명기법)

  • Yun, Chung-Bang;Koo, Ki-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.117-126
    • /
    • 2001
  • In this study, the recently developed unscented Kalman filter (UKF) technique is studied for identification of nonlinear structural dynamic systems as an alternative to the extended Kalman filter (EKF). The EKF, which was originally developed as a state estimator for nonlinear systems, has been frequently employed for parameter identification by introducing the state vector augmented with the unknown parameters to be identified. However, the EKF has several drawbacks such as biased estimations and erroneous estimations especially for highly nonlinear dynamic systems due to its crude linearization scheme. To overcome the weak points of the EKF, the UKF was recently developed as a state estimator. Numerical simulation studies have been carried out on nonlinear SDOF system and nonlinear MDOF system. The results from a series of numerical simulations indicate that the UKF is superior to the EKF in the system identification of nonlinear dynamic systems especially highly nonlinear systems.

  • PDF

An Extended Robust $H_{\infty}$ Filter for Nonlinear Constrained Uncertain System

  • Seo, Jae-Won;Yu, Myeong-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.565-569
    • /
    • 2003
  • In this paper, a robust filter is proposed to effectively estimate the system states in the case where system model uncertainties as well as disturbances are present. The proposed robust filter is constructed based on the linear approximation methods for a general nonlinear uncertain system with an integral quadratic constraint. We also derive the important characteristic of the proposed filter, a modified $H_{\infty}$ performance index. Analysis results show that the proposed filter has robustness against disturbances, such as process and measurement noises, and against parameter uncertainties. Simulation results show that the proposed filter effectively improves the performance.

  • PDF

Adaptive Nonlinear Filter for Removal of Salt-Pepper Noise in Infrared Image (적외선 영상의 Salt-Pepper 잡음제거를 위한 적응 비선형 필터)

  • Lee, Je-Il;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.9
    • /
    • pp.429-434
    • /
    • 2006
  • In this paper, detection based - adaptive windowed nonlinear filter(DB-AWNF) is proposed for removing salt-pepper noise in infrared image. This filter is composed of impulse detector and window-size-variable median filters. Impulse detector checks whether current pixel is impulse or not using range function and nonlinear location estimator. If impulse is detected, current pixel is filtered according to four kinds of local masks by use of median filter. If not, current pixel is delivered to output like identity filter. In Qualitative view, the proposed could have removed heavy corrupted noise up to 30% and reserved the details of image. In quantitative view, PSNR was measured. The proposed could have about 12-31[dB] more improved performance than those of median $(3{\times}3)$ filter and 13-29[dB] more improved performance than those of median $(5{\times}5)$ filter.

A Nonlinear Image Enhancement Method for Digital Mammogram (디지털 맘모그램을 위한 비선형 영상 향상 방법)

  • Jeon, Geum-Sang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.1
    • /
    • pp.6-12
    • /
    • 2013
  • Mammography is the most common technique for the early detection of breast cancer. To diagnose correctly and treat of breast cancer efficiently, many image enhancement methods have been developed. This paper presents a nonlinear image enhancement method for the enhancement of digital mammogram. The proposed method is composed of a nonlinear function for brightness improvement and a nonlinear filter for contrast enhancement. The nonlinear function improves the brightness of dark area and extends the dynamic range of bright area, and the nonlinear filter efficiently enhances the specific regions and objects of the mammogram. The final enhanced image was obtained by combining the processed image with the nonlinear function and the filtered image with the nonlinear filter. The proposed nonlinear image enhancement method was confirmed the enhanced performance comparing with other existing methods.