• 제목/요약/키워드: Nonlinear Effect

검색결과 2,524건 처리시간 0.053초

한계사이클을 이용한 마찰력의 규명 및 보상 (Limit Cycle Application to Friction Identification and Compensation)

  • 김민석;김명주;정성종
    • 대한기계학회논문집A
    • /
    • 제29권7호
    • /
    • pp.938-946
    • /
    • 2005
  • Friction is a dominant nonlinear factor in servomechanisms, which seriously deteriorates system accuracy. A friction compensator is indispensable to fabricate high-performance servomechanisms. In order to compensate for the friction in the servomechanism, identification of the friction elements is required. To estimate the friction of the servomechanism, an accurate linear element model of the system is required first. Tn this paper, a nonlinear friction model, in which static, coulomb and viscous frictions as well as Stribeck effect are included, is identified through the describing function approximation of the nonlinear element. A nonlinear element composed of two relays is intentionally devised to induce various limit cycle conditions in the velocity control loop of the servomechanism. The friction coefficients are estimated from the intersection points of the linear and nonlinear elements in the complex plane. A Butterworth filter is added to the velocity control loop not only to meet the assumption of the harmonic balance method but also to improve the accuracy of the friction identification process. Validity of the proposed method is confirmed through numerical simulations and experiments. In addition, a model-based friction compensator is applied as a feedforward controller to compensate fur the nonlinear characteristics of the servomechanism and to verify the effectiveness of the proposed identification method.

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • 제42권1호
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current

  • Pourreza, Tayyeb;Alijani, Ali;Maleki, Vahid A.;Kazemi, Admin
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.481-491
    • /
    • 2021
  • Graphene Nanosheets play an important role in nanosensors due to their proper surface to volume ratio. Therefore, the main purpose of this paper is to consider the nonlinear vibration behavior of graphene nanosheets (GSs) under the influence of electromagnetic fields and electrical current create forces. Considering more realistic assumptions, new equations have been proposed to study the nonlinear vibration behavior of the GSs carrying electrical current and placed in magnetic field. For this purpose, considering the influences of the magnetic tractions created by electrical and eddy currents, new relationships for electromagnetic interaction forces with these nanosheets have been proposed. Nonlinear coupled equations are discretized by Galerkin method, and then solved via Runge-Kutta method. The effect of different parameters such as size effect, electrical current magnitude and magnetic field intensity on the vibration characteristics of GSs is investigated. The results show that the magnetic field increases the linear natural frequency, and decreases the nonlinear natural frequency of the GSs. Excessive increase of the magnetic field causes instability in the GSs.

Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory

  • Tohidi, H.;Hosseini-Hashemi, S.H.;Maghsoudpour, A.
    • Smart Structures and Systems
    • /
    • 제22권5호
    • /
    • pp.527-546
    • /
    • 2018
  • This article presents an analysis into the nonlinear forced vibration of a micro cylindrical shell reinforced by carbon nanotubes (CNTs) with considering agglomeration effects. The structure is subjected to magnetic field and transverse harmonic mechanical load. Mindlin theory is employed to model the structure and the strain gradient theory (SGT) is also used to capture the size effect. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite cylindrical shell and consider the CNTs agglomeration effect. The motion equations are derived using Hamilton's principle and the differential quadrature method (DQM) is employed to solve them for obtaining nonlinear frequency response of the cylindrical shells. The effect of different parameters including magnetic field, CNTs volume percent and agglomeration effect, boundary conditions, size effect and length to thickness ratio on the nonlinear forced vibrational characteristic of the of the system is studied. Numerical results indicate that by enhancing the CNTs volume percent, the amplitude of system decreases while considering the CNTs agglomeration effect has an inverse effect.

전력계통안정화를 위한 간접적응 비선형제어 (Indirect adaptive nonlinear control for power system stabilization)

  • 이도관;윤태웅;이병준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.454-457
    • /
    • 1997
  • As in most industrial processes, the dynamic characteristics of an electric power system are subject to changes. Amongst those effects which cause the system to be uncertain, faults on transmission lines are considered. For the stabilization of the power system, we present an indirect adaptive control method, which is capable of tracking a sudden change in the effective reactance of a transmission line. As the plant dynamics are nonlinear, an input-output feedback linearization method equipped with nonlinear damping terms is combined with an identification algorithm which estimates the effect of a fault. The stability of the resulting adaptive nonlinear system is investigated.

  • PDF

Effects of curvature on leverage in nonlinear regression

  • Kahng, Myung-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.913-917
    • /
    • 2009
  • The measures of leverage in linear regression has been extended to nonlinear regression models. We consider several curvature measures of nonlinearity in an estimation situation. The relationship between measures of leverage and statistical curvature are explored in nonlinear regression models. The circumstances under which the Jacobian leverage reduces to a tangent plane leverage are discussed in connection with the effective residual curvature of the nonlinear model.

  • PDF

A nonlinear transformation methods for GMM to improve over-smoothing effect

  • Chae, Yi Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.182-187
    • /
    • 2014
  • We propose nonlinear GMM-based transformation functions in an attempt to deal with the over-smoothing effects of linear transformation for voice processing. The proposed methods adopt RBF networks as a local transformation function to overcome the drawbacks of global nonlinear transformation functions. In order to obtain high-quality modifications of speech signals, our voice conversion is implemented using the Harmonic plus Noise Model analysis/synthesis framework. Experimental results are reported on the English corpus, MOCHA-TIMIT.

정렬불량에 의한 기어구동계 비선형 해석 (Nonlinear Analysis of Gear Driving System due to Misalignment)

  • Lee, B. H.;Park, Y. S.
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문초록집
    • /
    • pp.311.2-311
    • /
    • 2002
  • Even through the problem of misalignment is of great importance, not much work has been reported in the literature on the effect of misalignment on the vibrations of the gear-bearing systems. Therefore, the nonlinear dynamic characteristics of the gear driving system due to misalignment are investigated in this work. Transmission error for helical gear and bearing nonlinear stiffness is calculated. (omitted)

  • PDF

반도체 레이저의 변조특성에서 비선형 이득에 관한 연구 (Analysis of nonlinear gain in modulation characteristics of semiconductor lasers)

  • 엄진섭;김창봉
    • 전자공학회논문지D
    • /
    • 제35D권2호
    • /
    • pp.93-100
    • /
    • 1998
  • In this paper we analyze the effect of nonlinear gain on laser modulation characteristics applying a small-signal analysis to the rate equation which includes a nonlinear gain term. Also we analyze the resonance frequency and the damping factor which determine laser modulation characteristics, define K factor which is the proportionality factor between resonance frequency and damping factor, and conclude that the decrease in K factor is due to increases in differential gain and no correlation between K factor and nonlinear gain is identified.

  • PDF

CERES Plot in Nonlinear Regression

  • Myung-Wook;Hye-Wook
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.1-12
    • /
    • 2000
  • We explore the structure and usefulness of CERES plot as a basic tool for dealing with curvature as a function of the new predictor in nonlinear regression. If a predictor has a nonlinear effect and there are nonlinear relationships among the predictors the partial residual plot and augmented partial residual plot are not able to display the correct functional form of the predictor. Unlike these plots the CERES plot can show the correct from. In situations where nonlinearity exists in two predictors we extend the idea of CERES plot to three dimensions, This is illustrated by simulated data.

  • PDF