• 제목/요약/키워드: Nonlinear Effect

검색결과 2,537건 처리시간 0.03초

정전기력 가진에 의한 외팔보형 탄소나노튜브 공진기의 비선형 동적 응답 (Nonlinear Dynamic Response of Cantilevered Carbon Nanotube Resonator by Electrostatic Excitation)

  • 김일광;이수일
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.813-819
    • /
    • 2011
  • This paper predicted nonlinear dynamic responses of a cantilevered carbon nanotube(CNT) resonator incorporating the electrostatic forces and van der Waals interactions between the CNT cantilever and ground plane. The structural model of CNT includes geometric and inertial nonlinearities to investigate various phenomena of nonlinear responses of the CNT due to the electrostatic excitation. In order to solve this problem, we used Galerkin's approximation and the numerical integration techniques. As a result, the CNT nano-resonator shows the softening effect through saddle-node bifurcation near primary resonance frequency with increasing the applied AC and DC voltages. Also we can predict nonlinear secondary resonances such as superharmonic and subharmonic resonances. The superharmonic resonance of the nano-resonator is influenced by applied AC voltage. The period-doubling bifurcation leads to the subharmonic resonance which occurs when the nano-resonator is actuated by electrostatic forces as parametric excitation.

Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation

  • Javanmard, Mehran;Bayat, Mahdi;Ardakani, Alireza
    • Steel and Composite Structures
    • /
    • 제15권4호
    • /
    • pp.439-449
    • /
    • 2013
  • In this study simply supported nonlinear Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads is investigated. A new kind of analytical technique for a non-linear problem called He's Energy Balance Method (EBM) is used to obtain the analytical solution for non-linear vibration behavior of the problem. Analytical expressions for geometrically non-linear vibration of Euler-Bernoulli beams resting on linear elastic foundation and subjected to the axial loads are provided. The effect of vibration amplitude on the non-linear frequency and buckling load is discussed. The variation of different parameter to the nonlinear frequency is considered completely in this study. The nonlinear vibration equation is analyzed numerically using Runge-Kutta $4^{th}$ technique. Comparison of Energy Balance Method (EBM) with Runge-Kutta $4^{th}$ leads to highly accurate solutions.

2차 비선형계의 파라메트릭 가진에 의한 진동 특성 (Parametrically Excited Vibrations of Second-Order Nonlinear Systems)

  • 박한일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.67-76
    • /
    • 1992
  • This paper describes the vibration characteristic of second-order nonlinear systems subjected to parametric excitation. Emphasis is put on the examination of the hydrodynamic nonlinear damping effect on limiting the response amplitudes of parametric vibration. Since the parametric vibration is described by the Mathieu equation, the Mathieu stability chart is examined in this paper. In addition, the steady-state solutions of the nonlinear Mathieu equation in the first instability region are obtained by using a perturbation technique and are compared with those by a numerical integration method. It is shown that the response amplitudes of parametric vibration are limited even in unstable conditions by hydrodynamic nonlinear damping force. The largest reponse amplitude of parametric vibration occurs in the first instability region of Mathieu stability chart. The parametric excitation induces the response of a dynamic system to be subharmonic, superharmonic or chaotic according to their dynamic conditions.

  • PDF

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

정사각형 외팔보에서의 일대일 공진 (One to One Resonance on the Quadrangle Cantilever Beam)

  • 김명구;박철희;조종두
    • 한국소음진동공학회논문집
    • /
    • 제15권7호
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

Sliding Mode Control with Friction Observer for a Precise Mechanical System in the Presence of Nonlinear Dynamic Friction

  • Han, Seong-Ik
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.296-304
    • /
    • 2002
  • A position tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate effects of friction. The conventional sliding mode controller often has been used as a non-model-based friction controller, but it has a poor tracking performance in high-precision position tracking application since it completely cannot compensate the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the sliding mode control method combined with the friction-model-based observer having tunable structure of the transient response. Then this control scheme has a good transient response as well as the high precise tracking performance compared with the conventional sliding mode control without observer and the control system with similar type of observer. The experiments on the bali-screw drive table with the nonlinear dynamic friction show the feasibility of the proposed control scheme.

ESTIMATION OF RIDE QUALITY OF A PASSENGER CAR WITH NONLINEAR SUSPENSION

  • Cho, S.J.;Choi, Y.S.
    • International Journal of Automotive Technology
    • /
    • 제8권1호
    • /
    • pp.103-109
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.545-554
    • /
    • 2020
  • The present paper explores nonlinear dynamical properties of piezo-magnetic beams based on a nonlocal refined higher-order beam formulation and piezoelectric phase effect. The piezoelectric phase increment may lead to improved vibrational behaviors for the smart beams subjected to magnetic fields and external harmonic excitation. Nonlinear governing equations of a nonlocal intelligent beam have been achieved based upon the refined beam model and a numerical provided has been introduced to calculate nonlinear vibrational curves. The present study indicates that variation in the volume fraction of piezoelectric ingredient has a substantial impact on vibrational behaviors of intelligent nanobeam under electrical and magnetic fields. Also, it can be seen that nonlinear free/forced vibrational behaviors of intelligent nanobeam have dependency on the magnitudes of induced electrical voltages, magnetic potential, stiffening elastic substrate and shear deformation.

Alterations of breakdown and collapse pressures due to material nonlinearities

  • Nawrocki, Pawel A.
    • Geomechanics and Engineering
    • /
    • 제1권2호
    • /
    • pp.155-168
    • /
    • 2009
  • Breakdown pressures obtained from the classic, linear elastic breakdown model are compared with the corresponding pressures obtained using a nonlinear material model. Compression test results obtained on sandstone and siltstone are used for that purpose together with previously formulated nonlinear model which introduces elasticity functions to address nonlinear stress-strain behaviour of rocks exhibiting stress-dependent mechanical properties. Linear and nonlinear collapse pressures are also compared and it is shown that material nonlinearities have significant effect on both breakdown and collapse pressures and on tangential stresses which control breakdown pressure around a borehole. This means that the estimates of ${\sigma}_H$ made using linear models give stress values which are different than the real values in the earth. Thus the importance of a more accurate analysis, such as provided by the nonlinear models, is emphasised. It is shown, however, that the linear elastic model does not necessarily over-predict borehole stresses and the opposite case can be true, depending on rock type and test interpretation.

와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석 (Nonlinear Vibration Analysis of Thin Perforated Plate with Wire Impact Damping)

  • 김성대;김원진;이부윤;이종원
    • 한국소음진동공학회논문집
    • /
    • 제12권8호
    • /
    • pp.639-647
    • /
    • 2002
  • The nonlinear vibration of the thin perforated plate is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the tension plate is obtained from dynamic condensation for the mass and stiffness matrices. Tension wire is modeled using the lumped parameter method to effectively describe its contact interactions with the plate. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. From the evaluation of the computational accuracy and computation time for the deduced impact stiffness and damping coefficient, we determined proper values for the simulation works, accounting for the computational accuracy as well as the computational efficiency. Finally we discussed the results of nonlinear nitration analysis for variations of their design parameters.