• Title/Summary/Keyword: Nonlinear Design

Search Result 4,479, Processing Time 0.027 seconds

A Study on the Abstraction of Movements Based on Laban's Space Theory "Choreutics" (라반의 공간조화이론 "코레우틱스(Choreutics)"를 활용한 움직임의 추상적 시각화 연구)

  • Kim, Hyeran;Lee, Sang Wook
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.3
    • /
    • pp.371-381
    • /
    • 2017
  • This paper presents a methodology for creating abstract animation based on the human movement theories originating from the work of dance theorist Rudolf von Laban. Laban Movement Analysis is a method and language for describing, visualizing, interpreting and documenting all varieties of human movement, and Choreutics is based on universal patterns of nature and of human as part of a universal design. Laban defines the space of movements in a profoundly dualistic way. Outwardly, his objective and scientific definitions provide a concrete base for generating human movements in computer graphics in terms of geometric and motion primitives such as points, lines, planes, polygons, linear and nonlinear movements. On the other hand, he also offers a system for understanding the subtle characteristics about the way a movement is dynamically done with respect to inner intention. Laban's interpretations of human motion can be utilized potentially in plastic arts and computer arts. Our work was inspired by those physical and psychological analyses and computer algorithms have been developed for creating abstract animation. We presented our computer animation works entitled "Choreography" in the exhibitions: a special section in "2015 Craft Trend Fair" and "Make Your Movement" held in the Korean Cultural Centre in UK, 2016. In this paper, we describe our ideas and methods for creating abstract object movements based on the Laban's motion representations.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Numerical Analysis of Wave Transformation of Bore in 2-Dimensional Water Channel and Resultant Wave Loads Acting on 2-Dimensional Vertical Structure (2차원수조내에서 단파의 변형과 구조물에 작용하는 단파파력에 관한 수치해석)

  • Lee, Kwang Ho;Kim, Chang Hoon;Kim, Do Sam;Hwang, Young Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.473-482
    • /
    • 2009
  • This study numerically discusses wave forces acting on a vertical wall such as breakwaters or revetments, subjected to incident undular or turbulent bores. Due to the complex hydrodynamics of bore, its wave forces have been predicted, mainly through laboratory experiments. Numerical simulations in this paper were carried out by CADMAS-SURF(CDIT, 2001), which is based on Navier-Stokes momentum equations and VOF method (Hirt and Nichols, 1981) for tracking free water surface. Its original source code was also partly revised to generate bore in the numerical water channel. Numerical raw data computed by CADMAS-SURF included great strong spike phenomena that show the abrupt jumps of wave loads. To resolve this undesired noise of raw data, the band-pass filter with the frequency of 5Hz was utilized. The filtered results showed reasonable agreements with the experimental results performed by Matsutomi (1991) and Ramsden (1996). It was confirmed that CADMASSURF can be applied to the design of coastal structures against tsunami bores. In addition, the transformation process and propagation speed of bores in the same 2-d water channel were discussed by the variations of water level for time and space. The numerical results indicated that the propagation speed of bore was changed due to the nonlinear interactions between negative and reflected waves.

FDI and the Evolution of Directed Technological Progress Bias: New Evidence from Korean Outward Investment

  • Boye Li;Xiang Li;Yaokun Wu
    • Journal of Korea Trade
    • /
    • v.27 no.5
    • /
    • pp.1-22
    • /
    • 2023
  • Purpose - Southeast Asia has been the focus of Korea's foreign investment. Korea has been helping developing countries in Southeast Asia achieve economic growth and win-win cooperation through capital exports. FDI is an important channel for technology diffusion. However, the impact of FDI on the bias of technological progress in the host country is dependent on the host country's own endowment structure and capital-labor factor substitution elasticity. Therefore, the central issue of this paper is to accurately evaluate the impact of Korea's FDI to the four Southeast Asian countries in various industries on their bias of technological progress. Design/methodology - The paper uses macroeconomic data for Korea and four East Asian countries to estimate capital-labor factor elasticities of substitution using nonlinear, seemingly uncorrelated regressions (NLSUR). Then, the biased technological change index (BTCI) is calculated for each country. Finally, panel data analysis is used to explore the impact of Korean FDI in various industries in the four Southeast Asian countries on their own directed technological progress, and a robustness test is conducted. Findings - There is a substitution relationship between capital and labor factors based on their elasticity in Korea, Singapore and the Philippines. There is a complementary relationship between capital and labor factors in Indonesia and Malaysia. According to the BTCI, there is a trend toward labor-biased technological progress in all countries. Korean investments in manufacturing, wholesale and retail trade in the host country trigger capital-biased technological change in the host country; investments in the finance, insurance and information and communication sectors trigger labor-biased technological change. In addition, this paper also confirms that directed technological progress can enable cross-country transmission. Originality/value - The innovation of this paper lies in three aspects. First, we estimate the BTCI for five countries and explore the trend and situation of directed technological progress in each country from each country's own perspective. Second, we explore the impact of Korean FDI in the host country on the bias to its technological progress at the industry level. Second, we explore the impact of Korean FDI in various industries in the four Southeast Asian countries on the four countries' own directed technological progress from a national perspective. Finally, we propose corresponding countermeasures for technological progress from the perspective of inverse factor endowment. These innovative points not only expand the understanding of technological progress and cross-country technology transfer in East Asia but also provide practical references for policy-makers and business operators.

Development of Self-centering Viscous Damper System for Seismic Retrofit of Ordinary Concentrically Braced Frame (보통중심가새골조의 내진보강을 위한 자가복원형 점성감쇠기 시스템 개발)

  • Do Yeon Kim;Hyuck Soon Choi;Joohyung Kang;Yongsun Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.70-78
    • /
    • 2023
  • The ordinary concentrically braced frame has an advantage of having simple design procedure. For this reason, it has been widely used for the small-sized frame structures subject to moderate or lower magnitude earthquake, even though its seismic performance against the earthquake load is not much effective compared to that of other frame systems. To enhance seismic performance of the ordinary concentrically braced frame where the bracing has a weakness for compressive behavior under lateral earthquake, seismic retrofitting by viscous damper has been commonly introduced. However, the viscous damper, itself, generally does not have stiffness for restoring the structure to the original position. This may cause residual displacement to the structure. In this paper, a self-centering viscous damper system in which upper and lower beams having flexural rigidity play a role as a nonlinear-elastic spring, restoring the spring-damper system subject to external displacement history to its original location, is developed. The numerical analysis for a simplified frame structure shows how including the developed self-centering viscous damper system leads to an enhanced seismic performance of the frame structure through energy dissipation during earthquake excitation.

Explainable Artificial Intelligence (XAI) Surrogate Models for Chemical Process Design and Analysis (화학 공정 설계 및 분석을 위한 설명 가능한 인공지능 대안 모델)

  • Yuna Ko;Jonggeol Na
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.542-549
    • /
    • 2023
  • Since the growing interest in surrogate modeling, there has been continuous research aimed at simulating nonlinear chemical processes using data-driven machine learning. However, the opaque nature of machine learning models, which limits their interpretability, poses a challenge for their practical application in industry. Therefore, this study aims to analyze chemical processes using Explainable Artificial Intelligence (XAI), a concept that improves interpretability while ensuring model accuracy. While conventional sensitivity analysis of chemical processes has been limited to calculating and ranking the sensitivity indices of variables, we propose a methodology that utilizes XAI to not only perform global and local sensitivity analysis, but also examine the interactions among variables to gain physical insights from the data. For the ammonia synthesis process, which is the target process of the case study, we set the temperature of the preheater leading to the first reactor and the split ratio of the cold shot to the three reactors as process variables. By integrating Matlab and Aspen Plus, we obtained data on ammonia production and the maximum temperatures of the three reactors while systematically varying the process variables. We then trained tree-based models and performed sensitivity analysis using the SHAP technique, one of the XAI methods, on the most accurate model. The global sensitivity analysis showed that the preheater temperature had the greatest effect, and the local sensitivity analysis provided insights for defining the ranges of process variables to improve productivity and prevent overheating. By constructing alternative models for chemical processes and using XAI for sensitivity analysis, this work contributes to providing both quantitative and qualitative feedback for process optimization.

Design Factor Analysis of End-Effector for Oriental Melon Harvesting Robot in Greenhouse Cultivation (시설재배 참외 수확 로봇용 엔드이펙터의 설계 요인 분석)

  • Ha, Yu Shin;Kim, Tae Wook
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.284-290
    • /
    • 2013
  • This study analyzed the geometric, compressive, cutting and friction properties of oriental melons in order to design a gripper capable of soft handling and a cutter for cutting oriental melon vine among the end effector of oriental melon as a preliminary step for developing the end effector of the robot capable of harvesting oriental melons in protected cultivation. As a result, the average length, diameter at the midpoint, weight, volume and roundness of the oriental melons were 108 mm, 70 mm, 188 g, 333 mL and 3.8 mm. Nonlinear regression analysis was performed on the equation $W=L^a{\times}D_2^b$ with variation of the length (L) and diameter (D2) of the weight (W) of the oriental melons. As a result, it was shown that there was a correlation between a of 2.0279 and b of -0.9998 as a constant value. The average diameter of the oriental melon vine was 3.8 mm, and most vines were distributed within a radius of 5 mm from the center. The average yield value, compressive strength and hardness of the oriental melons were $36.5N/cm^2$, $185.7N/cm^2$ and $636.7N/cm^2$, respectively. The average cutting force and shear strength of the oriental melon vines were $2.87{\times}10^{-2}\;N$ and $5.60N/cm^2$, respectively. The maximum friction coefficient of the oriental melons was rubber of 0.609, followed by aluminium of 0.393, stainless steel of 0.177 and teflon of 0.079. It was considered possible to apply it to the size of the gripper and cutter, turning radius, dynamics of drive motor and selection of materials and their quality in light of the position error and safety factor according to the movement when designing end effector based on the analyzed data.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

Stress dissipation characteristics of four implant thread designs evaluated by 3D finite element modeling (4종 임플란트 나사산 디자인의 응력분산 특성에 대한 3차원 유한요소해석 연구)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • Purpose: The aim was to investigate the effect of implant thread designs on the stress dissipation of the implant. Materials and methods: The threads evaluated in this study included the V-shaped, buttress, reverse buttress, and square-shaped threads, which were of the same size (depth). Building four different implant/bone complexes each consisting of an implant with one of the 4 different threads on its cylindrical body ($4.1mm{\times}10mm$), a force of 100 N was applied onto the top of implant abutment at $30^{\circ}$ with the implant axis. In order to simulate different osseointegration stages at the implant/bone interfaces, a nonlinear contact condition was used to simulate immature osseointegration and a bonding condition for mature osseointegration states. Results: Stress distribution pattern around the implant differed depending on the osseointegration states. Stress levels as well as the differences in the stress between the analysis models (with different threads) were higher in the case of the immature osseointegration state. Both the stress levels and the differences between analysis models became lower at the completely osseointegrated state. Stress dissipation characteristics of the V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration. These results indicated that implant thread design may have biomechanical impact on the implant bed bone until the osseointegration process has been finished. Conclusion: The stress dissipation characteristics of V-shape thread was in the middle of the four threads in both the immature and mature states of osseointegration.

An analysis of horizontal deformation of a pile in soil using a beam-on-spring model for the prediction of the eigenfrequency of the offshore wind turbine (해상풍력터빈의 고유진동수 예측을 위한 지반에 인입된 파일의 탄성지지보 모델 기반 수평 거동 해석)

  • Ryue, Jungsoo;Baik, Kyungmin;Kim, Tae-Ryong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.4
    • /
    • pp.261-271
    • /
    • 2016
  • In the prediction of response of a pile in soil, numerical approaches such as a finite element method are generally applied due to complicate nonlinear behaviors of soils. However, the numerical methods based on the finite elements require heavy efforts in pile and soil modelling and also take long computing time. So their usage is limited especially in the early design stage in which principal dimensions and properties are not specified and tend to vary. On the contrary, theoretical approaches adopting linear approximations for soils are relatively simple and easy to model and take short computing time. Therefore, if they are validated to be reliable, they would be applicable in predicting responses of a pile in soil, particularly in early design stage. In case of wind turbines regarded in this study, it is required to assess their natural frequencies in early stages, and in this simulation the supporting pile inserted in soil could be replaced with a simplified elastic boundary condition at the bottom end of the wind turbine tower. To do this, analysis for a pile in soil is performed in this study to extract the spring constants at the top end of the pile. The pile in soil can be modelled as a beam on elastic spring by assuming that the soils deform within an elastic range. In this study, it is attempted to predict pile deformations and influence factors for lateral loads by means of the beam-on-spring model. As two example supporting structures for wind turbines, mono pile and suction pile models with different diameters are examined by evaluating their influence factors and validated by comparing them with those reported in literature. In addition, the deflection profiles along the depth and spring constants at the top end of the piles are compared to assess their supporting features.