• 제목/요약/키워드: Nonlinear Damping

검색결과 687건 처리시간 0.026초

Effects of damping ratio on dynamic increase factor in progressive collapse

  • Mashhadi, Javad;Saffari, Hamed
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.677-690
    • /
    • 2016
  • In this paper, the effect of damping ratio on nonlinear dynamic analysis response and dynamic increase factor (DIF) in nonlinear static analysis of structures against column removal are investigated and a modified empirical DIF is presented. To this end, series of low and mid-rise moment frame structures with different span lengths and number of storeys are designed and the effect of damping ratio in DIF is investigated, performing several nonlinear static and dynamic analyses. For each damping ratio, a nonlinear dynamic analysis and a step by step nonlinear static analysis are carried out and the modified empirical DIF formulas are derived. The results of the analysis reveal that DIF is decreased with increasing damping ratio. Finally, an empirical formula is recommended that relates to damping ratio. Therefore, the new modified DIF can be used with nonlinear static analysis instead of nonlinear dynamic analysis to assess the progressive collapse potential of moment frame buildings with different damping ratios.

Nonlinear free vibration analysis of moderately thick viscoelastic plates with various geometrical properties

  • Nasrin Jafari;Mojtaba Azhari
    • Steel and Composite Structures
    • /
    • 제48권3호
    • /
    • pp.293-303
    • /
    • 2023
  • In this paper, geometrically nonlinear free vibration analysis of Mindlin viscoelastic plates with various geometrical and material properties is studied based on the Von-Karman assumptions. A novel solution is proposed in which the nonlinear frequencies of time-dependent plates are predicted according to the nonlinear frequencies of plates not dependent on time. This method greatly reduces the cost of calculations. The viscoelastic properties obey the Boltzmann integral law with constant bulk modulus. The SHPC meshfree method is employed for spatial discretization. The Laplace transformation is used to convert equations from the time domain to the Laplace domain and vice versa. Solving the nonlinear complex eigenvalue problem in the Laplace-Carson domain numerically, the nonlinear frequencies, the nonlinear viscous damping frequencies, and the nonlinear damping ratios are verified and calculated for rectangular, skew, trapezoidal and circular plates with different boundary conditions and different material properties.

The influence of nonlinear damping on the response of a piezoelectric cantilever sensor in a symmetric or asymmetric configuration

  • Habib, Giuseppe;Fainshtein, Emanuel;Wolf, Kai-Dietrich;Gottlieb, Oded
    • Smart Structures and Systems
    • /
    • 제30권3호
    • /
    • pp.239-243
    • /
    • 2022
  • We investigate the influence of nonlinear viscoelastic damping on the response of a cantilever sensor covered by piezoelectric layers in a symmetric or asymmetric configuration. We formulate an initial-boundary-value problem which consistently incorporates both geometric and material nonlinearities including the effect of viscoelastic damping which cannot be ignored for micro- and nano-mechanical sensor operation in a vacuum environment. We employ an asymptotic multiple-scales methodology to yield the system nonlinear frequency response near its primary resonance and employ a model-based estimation procedure to deduce the system damping backone curve from controlled experiments in vacuum. We discuss the effect of nonlinear damping on sensor applications for scanning probe microscopy.

역모델을 이용한 MR 댐퍼의 감쇠계수 제어 (Control of Damping Coefficients for the Shear Mode MR Dampers Using Inverse Model)

  • 나언주
    • 한국소음진동공학회논문집
    • /
    • 제23권5호
    • /
    • pp.445-455
    • /
    • 2013
  • A new linearization model for MR dampers is analyzed. The nonlinear hysteretic damping force model of MR damper can be modeled as a hyperbolic tangent function of currents, positions, and velicities, which is an algebraic function with constant parameters. Model parameters can be identified with numerical method using experimental force-velocity-position data obtained from various operating conditions. The nonlinear hysteretic damping force can be linearized with a given slope of damping coefficient if there exist corresponding currents to compensate for the nonlinearity. The corresponding currents can be calculated from the inverse model when the given linear damping force is set equal to the nonlinear hysteretic damping force. The linearization controller is realized in a DSP controller such that the corresponding currents to satisfy a given damping coefficient should be calculated. Experiments show that the current inputs to the MR damper produce linearized damping force with a given slope of the damping coefficient.

고차 주파수 스펙트럼을 이용한 ER 유체 댐퍼의 비선형 특성 해석 및 모델링 연구 (The Nonlinear Analysis and Modeling of the ER Fluid Damper Using Higher Order Spectrum)

  • 김동현;정태휘;조중선
    • 한국정밀공학회지
    • /
    • 제23권1호
    • /
    • pp.105-112
    • /
    • 2006
  • The nonlinear damping force model is made to identify the properties of the ER (electro-rheological) fluid suspension damper. The instrumentation is carried out to measure the damping force of the ER damper. The higher order spectral analysis method is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. The distinctive higher order nonlinear characteristics are observed. The nonlinear damping force model, which has the higher order velocity terms, is proposed with the result of higher order spectrum analysis. The higher order terms coefficients, which vary according to the strength of the electric field, are calculated using the least square method.

Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.295-303
    • /
    • 2018
  • The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and von $K{\acute{a}}rm{\acute{a}}n$ nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of spiral stiffened simply supported FG cylindrical shells.

댐핑 와이어를 갖는 새도우 마스크의 해석모델에 대한 실험적 검증 (Experimental Verification of Analysis Model of the Shadow Mask with Damping Wires)

  • 김성대;김원진;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.460-465
    • /
    • 2002
  • The nonlinear vibration of the CRT shadow mask is analyzed in consideration of the V-shaped tension distribution and the effect of wire impact damping. The reduced order FEM model of the shadow mask is obtained from dynamic condensation for the mass and stiffness matrices. Damping wire is modeled using the lumped parameter method to effectively describe its contact interactions with the shadow mask. The nonlinear contact-impact model is composed of spring and damper elements, of which parameters are determined from the Hertzian contact theory and the restitution coefficient, respectively. The analysis model of the shadow mask with damping wires is experimentally verified through impact tests of shadow masks performed in a vacuum chamber. Using the validated analysis model of the shadow mask with damping wires, the‘design of experiments’technique is applied to search fur the optimal damping wire configuration so that the vibration attenuation of the shadow mask is maximized.

  • PDF

국내 지반에서의 비선형 부지효과 예측 (Estimation of Nonlinear Site Effects of Soil Profiles in Korea)

  • 이홍성;윤세웅;박두희;김인태
    • 한국지반공학회논문집
    • /
    • 제24권3호
    • /
    • pp.13-23
    • /
    • 2008
  • 시간영역에서 수행되는 비선형 지반응답해석에서 지반의 미소변형률 감쇠는 Rayleigh 감쇠공식을 이용하여 점성감쇠로서 모사된다. 실제 지반의 미소변형률 감쇠는 주파수의 영향을 받지 않는 반면 시간영역해석에서의 점성감쇠는 주파수의 영향을 크게 받으며 이의 영향정도는 Rayleigh 감쇠공식에 따라서 결정된다. 본 연구에서는 국내 지반에 대한 비선형 지반응답해석시 감쇠공식의 영향을 평가하고자 일련의 해석을 수행하였다. 해석결과 점성감쇠공식은 계산된 응답에 매우 큰 영향을 미치는 것으로 나타났다. 널리 사용되는 Simplified Rayleigh 공식은 심도 30m 이상의 지반에서 수치적으로 발생하는 인공감쇠로 인하여 고주파수에서의 에너지 소산을 과대예측하는 것으로 나타난 반면, Full Rayleigh 공식을 사용하며 적절하게 최적주파수를 선정한 경우, 인공감쇠는 크게 감소하는 것으로 나타났다. 나아가 해석결과를 등가선형해석과 비교한 결과 20m 미만의 얕은 심도 지반에서도 등가선형 해석은 최대가속도를 과대예측 할 수 있는 것으로 나타났다.

비선형 지반특성이 수평 방향운동을 받는 기초지반체계의 동적강성에 미치는 영향 (Effects of Nonlinear Soil Characteristics on the Dynamic Stiffnesses of a Foundation-Soil System Excited with the Horizontal Motion)

  • 김용석
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.120-129
    • /
    • 2000
  • As structure-soil interaction analysis for the seismic analysis of structures requires a nonlinear analysis of a structure-soil system considering the inelastic characteristics of soil layers nonlinear analyses of the foundation-soil system with the horizontal excitation were performed considering the nonlinear soil conditions for the nonlinear seismic analysis of structures. Stiff soil profile of SD and soft soil profile of SE specified in UBC were considered for the soil layers of a foundation and Ramberg-Osgood model was assumed for the nonlinear characteristics of soil layers. Studies on the changes of dynamci stiffnesses and damping rations of surface and embedded foundations depending on foundation size soil layer depth and piles were performed to investigate the effects of the nonlinear soil layer on the horizontal and rotational dynamic stiffnesses and damping ratios of the foundation-soil system According to the study results nonlinear prperties of a soil laryer decreeased horizontal and rotational linear stiffnesses and increased damping ratios largely Effects of foundation size soil layer depth and piles were also significant suggesting the necessity of nonlinear seismic analyses of structures.

  • PDF

와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석 (Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping)

  • 김성대;김원진;이부윤;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF