• Title/Summary/Keyword: Nonlinear Control Law

Search Result 417, Processing Time 0.032 seconds

A Missile Guidance Law Based on Sontag's Formula to Intercept Maneuvering Targets

  • Ryoo, Chang-Kyung;Kim, Yoon-Hwan;Tahk, Min-Jea;Choi, Kee-Young
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.4
    • /
    • pp.397-409
    • /
    • 2007
  • In this paper, we propose a nonlinear guidance law for missiles against maneuvering targets. First, we derive the equations of motion described in the line-of-sight reference frame and then we define the equilibrium subspace of the nonlinear system to guarantee target interception within a finite time. Using Sontag's formula, we derive a nonlinear guidance law that always delivers the state to the equilibrium subspace. If the speed of the missile is greater than that of the target, the proposed law has global capturability in that, under any initial launch conditions, the missile can intercept the maneuvering target. The proposed law also minimizes the integral cost of the control energy and the weighted square of the state. The performance of the proposed law is compared with the augmented proportional navigation guidance law by means of numerical simulations of various initial conditions and target maneuvers.

Nonlinear Attitude Control for Uncertain Quad-rotors Using a Global Approximation-Free Control Scheme (GAFC 비선형 제어기법을 적용한 쿼드로터의 자세 및 고도제어)

  • Kim, Young-Ouk;Park, Seong-Yong;Leeghim, Henzeh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.10
    • /
    • pp.779-787
    • /
    • 2016
  • A nonlinear control law for the quad-rotor of a low-complexity, global approximation-free from system uncertainties and external disturbances are described in this paper. The control law guarantees convergence to a small bounded error using a prescribed performance function. The stability of the proposed nonlinear control system is also proven by the Lyapunov stability theorem. The advantage of this technique is that it has a simpler form than any other nonlinear compensators and is applicable to any nonlinear systems without precise knowledge of the systems. In this paper, the proposed approach is applied to attitude/altitude control of a quad-rotor. Numerical simulations are performed to investigate the proposed nonlinear attitude control law by applying it to an uncertain quadcopter system with external disturbances.

ADAPTIVEK FUZZY CONTROL BASED ON SPEED GRADIENT ALGORITHM

  • Jeoung, Sacheul;Yoo, Byungkook;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.178-182
    • /
    • 1995
  • In this paper, the fuzzy approximator and nonlinear inversion control scheme are considered. An adaptive nonlinear control is proposed based on the speed gradient algorithms proposed by Fradkov. This proposed control scheme is that three types of adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the nonlinear inversion controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, another three types of adaptive law is also introduced and the stability of proposed control scheme are proven with SG algorithm.

  • PDF

Robust Missile Autopilot Design using Dynamic Inversion and PI Control (Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계)

  • Cho, Sung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Expected Miss Distance Concept and Its Applications to Aircraft Guidance Law for Arbitrary Flight Trajectory Tracking (기동오차 개념을 이용한 임의형상 비행궤적 추종을 위한 유도법칙에 관한 연구)

  • 민병문;노태수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.6
    • /
    • pp.478-488
    • /
    • 2003
  • A guidance scheme that is suitable for controlling the aircraft flight path is proposed. The concept of miss distance which is commonly used in the missile guidance laws, and Lyapunov stability theorem are effectively combined to obtain the aircraft's trajectory-tracking guidance law. Guidance commands are given in terms of speed and flight path angles, but they perfectly reflect any position and velocity errors between real aircraft trajectory and reference one. The proposed guidance law is easily integrated into the existing flight control system. The new guidance law was extensively tested with various mission scenarios and the fully nonlinear 6-DOF aircraft model. Furthermore, the new guidance law was compared with previous guidance schemes in nonlinear simulation. Results from the numerical simulation show that the proposed guidance law yields better performance than previous ones.

Robust moving horizon control of nonlinear systems

  • Yang, Hyun-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.279-282
    • /
    • 1995
  • In this paper, a moving horizon control algorithm, which can be applied for a wide class of nonlinear systems with control and state constraints, is considered. In a neighborhood of the origin, a linear feedback controller is applied. Outside this neighborhood, a moving horizon control law is applied. The time taken to solve an optimal control problem is considered in the algorithm so that the proposed control law can be applied as an on-line controller.

  • PDF

ADAPTIVE SLICING ODE CONTROL USING FUZZY LOGIC SYSTEM

  • Yoo, Byungkook;Jeoung, Sacheul;Ham, Woonchul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.26-30
    • /
    • 1995
  • In this study, the fuzzy approximator and sliding mode control (SMC) scheme are considered. An adaptive sliding mode control is proposed based on the SMC theory. This proposed control scheme is that a adaptive law is utilized to approximate the unknown function f by fuzzy logic system in designing the sliding mode controller for the nonlinear system. In order to reduce the approximation errors, the differences of nonlinear function and fuzzy approximator, an adaptive law is also intoduced and the stability of proposed control scheme are proven with simple adaptive law and roburst adaptive law. This proposed control scheme is applied to a single link robot arm.

  • PDF

Nonlinear Adaptive Control Law for ALFLEX Using Dynamic Inversion and Disturbance Accommodation Control Observer

  • Higashi, Daisaku;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1871-1876
    • /
    • 2005
  • In this paper, We present a new nonlinear adaptive control law using a disturbance accommodating control (DAC) observer for a Japanese automatic landing flight experiment vehicle called ALFLEX. A future spaceplane must have ability to deal with greater fluctuations in the stability and control derivatives of flight dynamics, because its flight region is much wider than that of conventional aircraft. In our previous studies, digital adaptive flight control systems have been developed based on a linear-parameter-varying (LPV) model depending on dynamic pressure, and obtained good simulation results. However, under previous control laws, it is difficult to accommodate uncertainties represented by disturbance and nonlinearity, and to design a stable flight control system. Therefore, in this study, we attempted to design a nonlinear adaptive control law using the DAC Observer and inverse dynamic methods. A good tracking property of the obtained system was confirmed in numerical simulation.

  • PDF

Design of Robust, Optimal Controller using Sliding Mode (슬라이딩 모드를 이용한 견실 최적 제어기 설계)

  • Byun, Ji-Young;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.580-583
    • /
    • 2003
  • The general time optimal control law provides the optimal solution for a minimum time control problem. But in most real systems with disturbances and model uncertainties, the time optimal control law leads to chattering effect. This chattering effect can cause the system to be unstable. Therefore, we propose a robust optimal control algorithm for the nonlinear second order systems with model uncertainty. The proposed algorithm is combined with bang-bang control and sliding mode control. Thus the proposed algorithm has two state space regions to implement to control algorithm. In each region, the appropriate linear or nonlinear feedback control law is used satisfying the dynamic system equations. Simulation results show the superiority of the proposed controller in comparison with pure time optimal control(bang-bang control).

  • PDF

Nonlinear Control Law for Spacecraft Slew Maneuver using Backstepping Control Law (Backstepping 제어기법을 이간한 위성체 선회기동의 비선형 제어기법)

  • 김기석;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.4-4
    • /
    • 2000
  • In this paper, the backstepping control method that is useful for cascade systems is applied to the slew maneuver of the spacecraft. The quaternion is used for representing the attitude of the spacecraft, because the reference trajectory of angular velocity has simple mathematical form. The conventional backstepping control has severa] problems such as slow convergence, trivial cancelling of nonlinear terms, and excessive control input. To overcome these problems, the modified backstepping control method which is redesign of Lyapunov function is proposed. To design a tracking function for angular velocity, it is necessary to estimate the process of maximum angular velocity, and therefore the estimation procedure using Bellman-Gronwall inequality is developed. To verify the effectiveness of the proposed control law, numerical simulation is performed and the results are compared with the exiting control scheme.

  • PDF