• Title/Summary/Keyword: Nonlinear Compression

Search Result 456, Processing Time 0.028 seconds

Buckling Analysis of Laminated Composite Cylindrical Shell under Combined Load State (복합하중상태에 있는 복합재료 원통형 쉘의 좌굴 거동)

  • Yeo, Kyoung-Su;Yang, Won-Ho;Cho, Myoung-Rae;Sung, Ki-Deug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.119-130
    • /
    • 1999
  • This paper deals buckling behavior of laminated composite cylindrical shells subjected to combination of axial compression and torison. Linear and nonlinear finite element analysis are carried out . the influence of load type, load ratio, fiber orientation angle, stacking sequence, and intial imperfect on buckling behavior is discussed.

  • PDF

Time Effects on the Behavior of Reinforced Concrete Long Columns (철근콘크리트 장주의 시간에 다른 구조거동)

  • 김수만;최재원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.405-408
    • /
    • 2003
  • In a slender column under sustained eccentric compression, the deformations caused by creep and shrinkage can lead to an increase in the loads on the structure and a reduction in strength. This study presents a methodlogy and improved computer program for the analysis of time-dependent long column in considering slender effects and nonlinear behaviors. In this result, when slenderness ratio is greater than 80, we know that magnified moment methods may be not applied in long columns.

  • PDF

Active Audition System based on 2-Dimensional Microphone Array (2차원 마이크로폰 배열에 의한 능동 청각 시스템)

  • Lee, Chang-Hun;Kim, Yong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.175-178
    • /
    • 2003
  • This paper describes a active audition system for robot-human interface in real environment. We propose a strategy for a robust sound localization and for -talking speech recognition(60-300cm) based on 2-dimensional microphone array. We consider spatial features, the relation of position and interaural time differences, and realize speaker tracking system using fuzzy inference profess based on inference rules generated by its spatial features.

  • PDF

Effect of Reinforcement Type on Ultimate Strength of Tubular X-Joints (X형 관이음부의 보강방법에 따른 극한강도 해석)

  • 조현만;류현선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.230-237
    • /
    • 2000
  • Tubular joints of jacket structures are usually reinforced using thicker can section, internally ring stiffeners, diaphragm, or externally gusset plates to increase load carry capacity. In this paper, the effect of reinforcement type and geometric parameters of stiffener on the ultimate strength of tubular X-joints subjected to brace compression have been studied numerically Three reinforcement methods were considered; (1)can reinforcement (2)internally ring stiffener (3)internally longitudinal diaphragm. The ANSYS software was used nonlinear strength analysis. It was found that there is significant strength enhancement for reinforced joints.

  • PDF

Dynamic Behavior Analysis of Rotor-Bearing System for Rotary Compressor (로터리 압축기 회전체-베어링계의 동적 거동해석)

  • 김태학
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.244-251
    • /
    • 1999
  • Large dynamic loads act on the rotor in rotary compressors. There are unbalance forces due to eccentric rotation parts and gas forces induced by the pressure difference between compression and suction gases. Rotor-journal bearing system is nonlinear since the stiffness and damping coef-ficients of the lubrication oil film are not constant in the bearings. in this paper the program for predicting the behaviors of rotor-journal bearing system of rotary compressor is developed. Finite element modeling is used to analyze the flexible rotor. The numerical results are compared with experimental results.

  • PDF

Mechanical Testing and Nonlinear Material Properties for Finite Element Analysis of Rubber Components (고무부품의 유한요소해석을 위한 재료시험 및 비선형 재료물성에 관한 연구)

  • Kim, Wan-Doo;Kim, Wan-Soo;Kim, Dong-Jin;Woo, Chang-Soo;Lee, Hak-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.848-859
    • /
    • 2004
  • Mechanical testing methods to determine the material constants for large deformation nonlinear finite element analysis were demonstrated for natural rubber. Uniaxial tension, uniaxial compression, equi-biaxial tension and pure shear tests of rubber specimens are performed to achieve the stress-strain curves. The stress-strain curves are obtained after between 5 and 10 cycles to consider the Mullins effect. Mooney and Ogden strain-energy density functions, which are typical form of the hyperelastic material, are determined and compared with each other. The material constants using only uniaxial tension data are about 20% higher than those obtained by any other test data set. The experimental equations of shear elastic modulus on the hardness and maximum strain are presented using multiple regression method. Large deformation finite element analysis of automotive transmission mount using different material constants is performed and the load-displacement curves are compared with experiments. The selection of material constant in large deformation finite element analysis depend on the strain level of component in service.

Analytical study on prediction of nonlinear behavior of PSC structures (PSC 구조물의 비선형 거동 예측에 관한 해석적 연구)

  • Park, Jae-Guen;Oh, Myung-Seok;Choi, Jung-Ho;Shin, Hyun-Mock
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.442-445
    • /
    • 2006
  • This paper presents an analytical prediction of nonlinear characteristics and behavior characteristics PSC structures with un-bonded tendon system. In this paper, a numerical model for un-bonded tendon is proposed based on the finite element method, which can represent straight or curved un-bonded tendon behavior. this model and time-dependent material model used to investigate the time-dependent behavior of un-bonded prestressed concrete structures. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of concrete structures and steel plate was used. The material nonlinearities are taken into account by comprising the tension, compression, and shear models of cracked concrete and models for reinforcements and tendons in the concrete. The smeared crack approach is incorporated. It accounts for the aging, creep and shrinkage of concrete and the stress relaxation of prestressed steel. The proposed un-bonded tendon model and numerical method of un-bonded prestressed concrete structures is verified by comparison with reliable experimental results.

  • PDF

A Study on the Geometric Nonlinear Behaviour of Ship Plate by Energy Method (에너지법에 의한 선체판의 기하학적 비선형거동에 관한 연구)

  • Jae-Yong Ko
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.94-104
    • /
    • 1999
  • Plate buckling is very important design criteria when the ship is composed of high tensile steel plates. In general, the plate element contributes to inplane stiffness against the action of inplane load. If the inplane stiffness of the plating decreases due to buckling including the secondary buckling, the flexural rigidity of the cross section of a ship's hull also decreases. In these cases, the precise estimation of plate's behaviour after buckling is necessary, and geometric nonlinear behaviour of isolated plates is required for structural system analysis. In this connection, the author investigated the geometric nonlinear behaviour of simply supported rectangular plates under uniaxial compression in the longitudinal direction in which the principle of minimum potential energy method is employed. Based on the energy method, elastic large deflection analysis of isolated palate is performed and simple expression are derived to discuss the bifurcation paint type buckling and limit point type buckling.

  • PDF

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading

  • Liu, Weizheng;Shi, Zhiguo;Zhang, Junhui;Zhang, Dingwen
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.299-313
    • /
    • 2019
  • This research investigated the nonlinear compressibility, permeability, the yielding due to structural degradation and their effects on consolidation behavior of structured soft soils. Based on oedometer and hydraulic conductivity test results of natural and reconstituted soft clays, linear log (1+e) ~ $log\;{\sigma}^{\prime}$ and log (1+e) ~ $log\;k_v$ relationships were developed to capture the variations in compressibility and permeability, and the yield stress ratio (YSR) was introduced to characterize the soil structure of natural soft clay. Semi-analytical solutions for one-dimensional consolidation of soft clay under time-dependent loading incorporating the effects of soil nonlinearity and soil structure were proposed. The semi-analytical solutions were verified against field measurements of a well-documented test embankment and they can give better accuracy in prediction of excess pore pressure compared to the predictions using the existing analytical solutions. Additionally, parametric studies were conducted to analyze the effects of YSR, compression index (${\lambda}_r$ and ${\lambda}_c$), and permeability index (${\eta}_k$) on the consolidation behavior of structured soft clays. The magnitude of the difference between degree of consolidation based on excess pore pressure ($U_p$) and that based on strain ($U_s$) depends on YSR. The parameter ${\lambda}_c/{\eta}_k$ plays a significant role in predicting consolidation behavior.