• 제목/요약/키워드: Nonlinear Behaviour

검색결과 415건 처리시간 0.025초

Flexural behaviour of GFRP reinforced concrete beams under cyclic loading

  • Murthy, A. Ramachandra;Gandhi, P.;Pukazhendhi, D.M.;Samuel, F. Giftson;Vishnuvardhan, S.
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.361-373
    • /
    • 2022
  • This paper examines the flexural performance of concrete beams reinforced with glass fibre-reinforced polymer (GFRP) bars under fatigue loading. Experiments were carried out on concrete beams of size 1500×200×100 mm reinforced with 10 mm and 13 mm diameter GFRP bars under fatigue loading. Experimental investigations revealed that fatigue loading affects both strength and serviceability properties of GFRP reinforced concrete. Experimental results indicated that (i) the concrete beams experienced increase in deflection with increase in number of cycles and failed suddenly due to snapping of rebars and (ii) the fatigue life of concrete beams drastically decreased with increase in stress level. Analytical model presented a procedure for predicting the deflection of concrete beams reinforced with GFRP bars under cyclic loading. Deflection of concrete beams was computed by considering the aspects such as stiffness degradation, force equilibrium equations and effective moment of inertia. Nonlinear finite element (FE) analysis was performed on concrete beams reinforced with GFRP bars. Appropriate constitutive relationships for concrete and GFRP bars were considered in the numerical modelling. Concrete non linearity has been accounted through concrete damage plasticity model available in ABAQUS. Deflection versus number of cycles obtained experimentally for various beams was compared with the analytical and numerical predictions. It was observed that the predicted values are comparable (less than 20% difference) with the corresponding experimental observations.

탄·소성 쌍곡선 모델을 이용한 백마강 모래의 거동특성 연구 (A Study on the Behaviour of Baekma River Sands Using Elasto-Plastic Hyperbolic Model)

  • 양승재;박기현;박형렬;양경진;김찬기
    • 한국지반신소재학회논문집
    • /
    • 제19권1호
    • /
    • pp.93-101
    • /
    • 2020
  • 흙의 비선형적 거동특성을 예측하기 위해 비교적 간편하고 예측의 정도가 높은 것으로 평가되는 탄·소성 쌍곡선모델을 선정하였다. 모델의 특성을 알아보기 위해 구성모델에 관련된 함수를 정식화하여 토질매개변수 결정 및 거동해석 프로그램을 개발하였다. 상대밀도 변화에 따른 백마강모래의 배수삼축압축시험 결과로부터 각각의 토질매개변수를 결정하였고 상대밀도에 따른 토질매개변수의 변화 특성을 분석하였으며 각각의 조건에서 결정된 토질매개변수를 이용하여 응력-변형률 거동을 예측하였다. 그 결과 축변형률에 대한 축차응력은 각각의 상대밀도에서 측정치와 예측치가 양호하게 일치하는 것을 확인하였고 축변형률에 대한 체적변형률의 관계에서 상대밀도가 작은 경우는 측정치와 예측치가 일치하는 경향을 보이나 상대밀도가 큰 경우에는 구성모델의 한계로 인해 체적변형률의 예측치가 측정치보다 다소 작게 나타나는 것을 확인 하였다.

EPS 거동 예측 모델의 적용성에 대한 연구 (A Study on the Application of Numerical Model to Predict Behaviour of EPS)

  • 천병식;유한규;임해식
    • 한국지반공학회지:지반
    • /
    • 제12권6호
    • /
    • pp.185-198
    • /
    • 1996
  • EPS(Expanded Polystyrene)를 이용한 하중경감공법은 초경량재(20~30kg/m3)인 EPS를 본 연구는 보강토 토류벽체의 뒤채움재로서 폐 EPS 조각을 혼합한 경량의 성토재료를 개발, 활용하기 위한 기초연구로서, 우리나라에 광범위하게 분포하는 화강풍화토와 폐 EPS조각을 혼합한 경량성토재에 대해 공학적 특성파악을 위한 기본물성시험을 수행하였고, 또한 국내에서 판매되고 있는 두가지 대표적인 강성 및 연성 지오그리드 보강재에 대해 폐 EPS조각의 혼합비를 변화시 켜가며 실내인발시험을 수행하였으며, 이들 시험결과를 토대로 하여 폐 EPS조각 혼합경량토의 토질공학적 특성과 지오그리드-혼합경량토 사이의 마찰특성을 분석.평가하였다. 또한 본 연구에서는, 인장력 이외에도 다짐하중 및 상재하중 등 수직하중에 의한 압축력이 추가로 동시에 작용하는 경우의 지오그리드의 인장력-변형률 관계를 고려할 수 있는 마찰강도 산정방법을 제시하였으며, 이 방법을 토대로 하여 지오그리드-혼합토 사이의 마찰강도 평가시 적용가능한 보정계수 a1 및 a2 값의 범위를 제시하였다.

  • PDF

Experimentally validated FEA models of HF2V damage free steel connections for use in full structural analyses

  • Desombre, Jonathan;Rodgers, Geoffrey W.;MacRae, Gregory A.;Rabczuk, Timon;Dhakal, Rajesh P.;Chase, J. Geoffrey
    • Structural Engineering and Mechanics
    • /
    • 제37권4호
    • /
    • pp.385-399
    • /
    • 2011
  • The aim of this research is to model the behaviour of recently developed high force to volume (HF2V) passive energy dissipation devices using a simple finite element (FE) model. Thus, the end result will be suitable for use in a standard FE code to enable computationally fast and efficient analysis and design. Two models are developed. First, a detailed axial model that models an experimental setup is created to validate the approach versus experimental results. Second, a computationally and geometrically simpler equivalent rotational hinge element model is presented. Both models are created in ABAQUS, a standard nonlinear FE code. The elastic, plastic and damping properties of the elements used to model the HF2V devices are based on results from a series of quasi-static force-displacement loops and velocity based tests of these HF2V devices. Comparison of the FE model results with the experimental results from a half scale steel beam-column sub-assembly are within 10% error. The rotational model matches the output of the more complex and computationally expensive axial element model. The simpler model will allow computationally efficient non-linear analysis of large structures with many degrees of freedom, while the more complex and physically accurate axial model will allow detailed analysis of joint connection architecture. Their high correlation to experimental results helps better guarantee the fidelity of the results of such investigations.

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

수치모형에 의한 터널발파 시뮬레이션에 관한 연구 (Numerical Simulation of Tunnel Blasting)

  • 박정주;박의섭
    • 터널과지하공간
    • /
    • 제11권4호
    • /
    • pp.344-351
    • /
    • 2001
  • 발파를 이용한 터널굴착에 있어서, 장약량 산정이나 터널 주변 암반 및 구조물웨 대한 영향 평가 등은 주로 간단한 경험식에 의해 이루어져 왔다. 또한 지금까지 발파의 충격에너지를 고려한 지하구조물의 동해석 연구는 매우 빈약한 실정이라 할 수 있다. 따라서 본 연구에서는 발파하중을 받는 불연속체 지하구조물의 비선형 거동을 평가하기 위하여 2차원 개별요소법의 수치모델기법을 개발하였고, 실제문제에의 적용성을 검토하기 위하여 제방하부에 위치한 터널발파의 수치해석을 통하여 시간별 지하 및 지상 구조물의 변위 및 입자속도의 전파과정을 살펴보았다. 해석결과 본 연구에서 제안한 발파하중의 모형이 실제 문제에 적용될 수 있었고, 이를 개별요소해석에 적용함으로써 발파지역 주변의 구조물의 안정성을 검토할 수 있었다.

  • PDF

Development of a displacement-based design approach for modern mixed RC-URM wall structures

  • Paparoa, Alessandro;Beyer, Katrin
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.789-830
    • /
    • 2015
  • The recent re-assessment of the seismic hazard in Europe led for many regions of low to moderate seismicity to an increase in the seismic demand. As a consequence, several modern unreinforced masonry (URM) buildings, constructed with reinforced concrete (RC) slabs that provide an efficient rigid diaphragm action, no longer satisfy the seismic design check and have been retrofitted by adding or replacing URM walls with RC walls. Of late, also several new construction projects have been conceived directly as buildings with both RC and URM walls. Despite the widespread use of such construction technique, very little is known about the seismic behaviour of mixed RC-URM wall structures and codes do not provide adequate support to designers. The aim of the paper is therefore to propose a displacement-based design methodology for the design of mixed RC-URM edifices and the retrofit of URM buildings by replacing or adding selected URM walls with RC ones. The article describes also two tools developed for estimating important quantities relevant for the displacement-based design of structures with both RC and URM walls. The tools are (i) a mechanical model based on the shear-flexure interaction between URM and RC walls and (ii) an elastic model for estimating the contribution of the RC slabs to the overturning moment capacity of the system. In the last part of the article the proposed design method is verified through nonlinear dynamic analyses of several case studies. These results show that the proposed design approach has the ability of controlling the displacement profile of the designed structures, avoiding concentration of deformations in one single storey, a typical feature of URM wall structures.

Seismic response of non-structural components attached to reinforced concrete structures with different eccentricity ratios

  • Aldeka, Ayad B.;Dirar, Samir;Chan, Andrew H.C.;Martinez-Vazquez, Pedro
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1069-1089
    • /
    • 2015
  • This paper presents average numerical results of 2128 nonlinear dynamic finite element (FE) analyses of lightweight acceleration-sensitive non-structural components (NSCs) attached to the floors of one-bay three-storey reinforced concrete (RC) primary structures (P-structures) with different eccentricity ratios. The investigated parameters include the NSC to P-structure vibration period ratio, peak ground acceleration, P-structure eccentricity ratio, and NSC damping ratio. Appropriate constitutive relationships were used to model the behaviour of the RC P-structures. The NSCs were modelled as vertical cantilevers fixed at their bases with masses on the free ends and varying lengths so as to match the vibration periods of the P-structures. Full dynamic interaction was considered between the NSCs and P-structures. A set of seven natural bi-directional ground motions were used to evaluate the seismic response of the NSCs. The numerical results show that the acceleration response of the NSCs depends on the investigated parameters. The accelerations of the NSCs attached to the flexible sides of the P-structures increased with the increase in peak ground acceleration and P-structure eccentricity ratio but decreased with the increase in NSC damping ratio. Comparison between the FE results and Eurocode 8 (EC8) predictions suggests that, under tuned conditions, EC8 provisions underestimate the seismic response of the NSCs mounted on the flexible sides of the plan-irregular RC P-structures.

Development of fragility curves for RC bridges subjected to reverse and strike-slip seismic sources

  • Mosleh, Araliya;Razzaghi, Mehran S.;Jara, Jose;Varum, Humberto
    • Earthquakes and Structures
    • /
    • 제11권3호
    • /
    • pp.517-538
    • /
    • 2016
  • This paper presents a probabilistic fragility analysis for two groups of bridges: simply supported and integral bridges. Comparisons are based on the seismic fragility of the bridges subjected to accelerograms of two seismic sources. Three-dimensional finite-element models of the bridges were created for each set of bridge samples, considering the nonlinear behaviour of critical bridge components. When the seismic hazard in the site is controlled by a few seismic sources, it is important to quantify separately the contribution of each fault to the structure vulnerability. In this study, seismic records come from earthquakes that originated in strike-slip and reverse faulting mechanisms. The influence of the earthquake mechanism on the seismic vulnerability of the bridges was analysed by considering the displacement ductility of the piers. An in-depth parametric study was conducted to evaluate the sensitivity of the bridges' seismic responses to variations of structural parameters. The analysis showed that uncertainties related to the presence of lap splices in columns and superstructure type in terms of integral or simply supported spans should be considered in the fragility analysis of the bridge system. Finally, the fragility curves determine the conditional probabilities that a specific structural demand will reach or exceed the structural capacity by considering peak ground acceleration (PGA) and acceleration spectrum intensity (ASI). The results also show that the simply supported bridges perform consistently better from a seismic perspective than integral bridges and focal mechanism of the earthquakes plays an important role in the seismic fragility analysis of highway bridges.

수치모형에 의한 연안해역 해수운동의 분석 (Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model)

  • 이희영;정선길
    • 물과 미래
    • /
    • 제27권2호
    • /
    • pp.73-83
    • /
    • 1994
  • 확산현상, 표사유동 및 인간의 여러 활동이 실제 연안해역에서 일어나므로 연안해역 해수운동의 물리적 특성을 파악하고 해석하는 것은 중요한 의미를 지닌다. 본 연구에서는 연안해역에서의 파랑변형과 평균해수위 변동 그리고 연안유속 분포양상에 대해 여러 인자들이 미치는 영향을 2차원 유한차분 모형(ADI, Up-wind)을 이용하여 분석하였다. 계산결과로는 수치모형을 해저경사가 일정한 2차원 지형에 적용하여 해저경사, 입사파고, 파향각, 파주기, 마찰계수 및 수평확산계수가 연안해역 특히 쇄파대내에서 파랑변형, 평균해수위 변동 및 연안유속 분포에 미치는 영향을 분석하였다.

  • PDF