• Title/Summary/Keyword: Noninvasive Imaging

Search Result 151, Processing Time 0.022 seconds

Nuclear Imaging of Cellular Proliferation (핵의학적 세포증식 영상)

  • Yeo, Jeong-Seok
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.198-204
    • /
    • 2004
  • Tumor cell proliferation is considered to be a useful prognostic indicator of tumor aggressiveness and tumor response to therapy but in vitro measurement of individual proliferation is complex and tedious work. PET imaging provides a noninvasive approach to measure tumor growth rate in situ. Early approaches have used $^{18}F$-FDG or methionine to monitor proliferation status. These 2 tracers detect changes in glucose and amino acid metabolism, respectively, and therefore provide only an indirect measure of proliferation status. More recent studies have focused on DNA synthesis itself as a marker of cell proliferation. Cell lines and tissues with a high proliferation rate require high rates of DNA synthesis. $[^{11}C]Thymidine$ was the first radiotracer for noninvasive imaging of tumor proliferation. The short half-life of $^{11}C$ and rapid metabolism of $[^{11}C]Thymidine$ in vivo make the radiotracer less suitable for routing use. Halogenated thymidine analogs such as 5-iodo-2-deoxyuridine (IUdR) can be successfully used as cell proliferation markers for in vitro studies because these compounds are rapidly incorporated into newly synthesized DNA. IUdR has been evaluated as a potential in vivo tracer in nuclear medicing but the image qualify and the calculation of proliferation rates are impaired by its rapid in vivo degradation. Hence, the thymidine analog $3'-deoxy-3'-^{18}F-fluorothymidine$ (FLT) was recently introduced as a stable proliferation marker with a suitable nuclide half-life and stable in vivo. $[^{18}F]FLT$ is phosphorylated to 3-fluorothymidine monophosphate by thymidine kinase 1 and reflects thymidine kinase 1 activity in proliferating cell. $[^{18}F]FLT$ PET is feasible in clincal use and well correlates with cellular proliferation. Choline is a precursor for the biosynthesis of phospholipids (in particular, phosphatidylcholine), which is the essential component of all eukaryotic cell membranes and $[^{11}C]choline$, which is a new marker for cellular proliferation.

Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study

  • Park, Jin-Young;Chung, Jung-Ho;Lee, Jung-Seok;Kim, Hee-Jin;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.30-40
    • /
    • 2017
  • Purpose: Optical coherence tomography (OCT) is a noninvasive diagnostic technique that may be useful for both qualitative and quantitative analyses of the periodontium. Micro-computed tomography (micro-CT) is another noninvasive imaging technique capable of providing submicron spatial resolution. The purpose of this study was to present periodontal images obtained using ex vivo dental OCT and to compare OCT images with micro-CT images and histologic sections. Methods: Images of ex vivo canine periodontal structures were obtained using OCT. Biologic depth measurements made using OCT were compared to measurements made on histologic sections prepared from the same sites. Visual comparisons were made among OCT, micro-CT, and histologic sections to evaluate whether anatomical details were accurately revealed by OCT. Results: The periodontal tissue contour, gingival sulcus, and the presence of supragingival and subgingival calculus could be visualized using OCT. OCT was able to depict the surface topography of the dentogingival complex with higher resolution than micro-CT, but the imaging depth was typically limited to 1.2-1.5 mm. Biologic depth measurements made using OCT were a mean of 0.51 mm shallower than the histologic measurements. Conclusions: Dental OCT as used in this study was able to generate high-resolution, cross-sectional images of the superficial portions of periodontal structures. Improvements in imaging depth and the development of an intraoral sensor are likely to make OCT a useful technique for periodontal applications.

Development of Drugs and Technology for Radiation Theragnosis

  • Jeong, Hwan-Jeong;Lee, Byung Chul;Ahn, Byeong-Cheol;Kang, Keon Wook
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.597-607
    • /
    • 2016
  • Personalized medicine is tailored medical treatment that targets the individual characteristics of each patient. Theragnosis, combining diagnosis and therapy, plays an important role in selecting appropriate patients. Noninvasive in vivo imaging can trace small molecules, antibodies, peptides, nanoparticles, and cells in the body. Recently, imaging methods have been able to reveal molecular events in cells and tissues. Molecular imaging is useful not only for clinical studies but also for developing new drugs and new treatment modalities. Preclinical and early clinical molecular imaging shows biodistribution, pharmacokinetics, mechanisms of action, and efficacy. When therapeutic materials are labeled using radioisotopes, nuclear imaging with positron emission tomography or gamma camera can be used to treat diseases and monitor therapy simultaneously. Such nuclear medicine technology is defined as radiation theragnosis. We review the current development of drugs and technology for radiation theragnosis using peptides, albumin, nanoparticles, and cells.

Clinical Application of Cardiac Hybrid Imaging in Coronary Artery Disease (관상동맥질환에서 심장 하이브리드 영상의 임상적 이용)

  • Gho, Ihn-Ho;Kong, Eun-Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.26 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Constant technological developments in coronary artery disease have contributed to the assessment of both the presence of coronary stenosis and its hemodynamic consequences. Hence, noninvasive imaging helps guide therapeutic decisions by providing complementary information on coronary morphology and on myocardial perfusion and metabolism. This can he done using single photon emission computed tomography (SPECT) or positron emission tomography (PET) and multidetector CT (MDCT). Advances in image-processing software and the advent of SPECT/CT and PET/CT have paved the way for the combination of image datasets from different modalities, giving rise to hybrid imaging. Three dimensional cardiac hybrid imaging helped to confirm hemodynamic significance in many lesions, add new lesions such as left main coronay artery disease, exclude equivocal defects, correct the corresponding arteries to their allocated defects and identify culprit segment. Cardiac hybrid imaging avoids the mental integration of functional and morphologic images and facilitates a comprehensive interpretation of coronaty lesions and their pathophysiologic adequacy by three dimensional display of fused images, and allows the best evaluation of myocardial territories and the coronary-artery branches that serve each territory. This integration of functional and morphological information were feasible to intuitively convincing and might facilitate development of a comprehensive non-invasive assessment of coronary artery disease.

  • PDF

Radiolabeled Benzamide Derivatives for Development of Malignant Melanoma Imaging Agents

  • Ayoung Pyo;Boreum Song;Heejung Kim;Dong-Yeon Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.25-32
    • /
    • 2022
  • Malignant melanoma has an aggressive nature and high metastatic potential that result in one of the highest cancer mortality rates. Over the past three decades, primary and metastatic melanoma incidence has rapidly increased. The recent advances in diagnostic technology have shown promise, but there is still an enormous need for specific detection methods to diagnose malignant melanoma. Positron emission tomography can visualize a particular biomarker of malignant melanoma and promise a noninvasive image of micrometastases. However, the development of PET radiopharmaceuticals remains necessary for diagnosing malignant melanoma by using positron emission tomography. In this review, the history and a general overview of PET radionuclide labeled benzamide derivatives, including their radiosynthesis, in vivo characterization, and evaluation, are provided as imaging agents for malignant melanoma.

A Handheld Probe Based Optical Coherence Tomography System for Diagnosis of Dental Calculus (치석 진단용 소형 프로브 기반 광간섭단층촬영 시스템)

  • Lee, Chang-Ho;Woo, Chai-Kyoung;Jung, Woong-Gyu;Kang, Hyun-Wook;Oh, Jung-Hwan;Kim, Jee-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.217-222
    • /
    • 2012
  • Optical coherence tomography(OCT) is a noninvasive optical imaging tool for biomedical applications. OCT can provide depth resolved two/three dimensional morphological images on biological samples. In this paper, we integrated an OCT system that was composed of an SLED(Superluminescent Light Emitting Diode, ${\lambda}_0$=1305 nm bandwith= 141 nm), a reference arm adopting a rapid scanning optical delay line(RSOD) to get high speed imaging, and a sample arm that used a micro electro mechanical systems(MEMS) scanning mirror. The sample arm contained a compact probe for imaging dental structures. The performance of the system was evaluated by imaging in-vivo human teeth with dental calculus, and the results indicated distinct appearance of dental calculus from enamel, gum or decayed teeth. The developed probe and system could successfully confirm the presence of dental calculus with a very high spatial resolution($6{\mu}m$).

SPECTROSCOPIC ADMITTIVITY IMAGING OF BIOLOGICAL TISSUES: CHALLENGES AND FUTURE DIRECTIONS

  • Zhang, Tingting;Bera, Tushar Kanti;Woo, Eung Je;Seo, Jin Keun
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.2
    • /
    • pp.77-105
    • /
    • 2014
  • Medical imaging techniques have evolved to expand our ability to visualize new contrast information of electrical, optical, and mechanical properties of tissues in the human body using noninvasive measurement methods. In particular, electrical tissue property imaging techniques have received considerable attention for the last few decades since electrical properties of biological tissues and organs change with their physiological functions and pathological states. We can express the electrical tissue properties as the frequency-dependent admittivity, which can be measured in a macroscopic scale by assessing the relation between the time-harmonic electric field and current density. The main issue is to reconstruct spectroscopic admittivity images from 10 Hz to 1 MHz, for example, with reasonably high spatial and temporal resolutions. It requires a solution of a nonlinear inverse problem involving Maxwell's equations. To solve the inverse problem with practical significance, we need deep knowledge on its mathematical formulation of underlying physical phenomena, implementation of image reconstruction algorithms, and practical limitations associated with the measurement sensitivity, specificity, noise, and data acquisition time. This paper discusses a number of issues in electrical tissue property imaging modalities and their future directions.

SONOGRAPHIC FINDING OF MAXILLOFACIAL MASS (악안면 종창에 대한 초음파 소견)

  • Kim, Hyoun-Tae
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.14 no.1_2
    • /
    • pp.143-145
    • /
    • 1992
  • Fourteen masses in the maxillofacial areas which are not diagnosised simply as abscess were studied with ultrasound to evaluate its diagnostic role. Benign mass showed homogeneous echopattern with smooth margin and cyst a few internal echo with smooth margin. But malignant mass showed irregular margin, inhomogeneous echotexture and deep extension. Ultrasonography considered as an initial noninvasive imaging modality for the evaluation of maxillofacial masses.

  • PDF

MOLECULAR NUCLEAR IMAGING FOR TARGETING AND TRAFFICKING

  • Bom Hee-Seung;Min Jung-Jun;Jeong Hwan-Jeong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.399-404
    • /
    • 2006
  • Noninvasive molecular targeting in living subjects is highly demanded for better understanding of such diverse topics as the efficient delivery of drugs, genes, or radionuclides for the diagnosis or treatment of diseases. Progress in molecular biology, genetic engineering and polymer chemistry provides various tools to target molecules and cells in vivo. We used chitosan as a polymer, and $^{99m}Tc$ as a radionuclide. We developed $^{99m}Tc-galactosylated$ chitosan to target asialoglycoprotein receptors for nuclear imaging. We also developed $^{99m}Tc-HYNIC-chitosan-transferrin$ to target inflammatory cells, which was more effective than $^{67}Ga-citrate$ for imaging inflammatory lesions. For an effective delivery of molecules, a longer circulation time is needed. We found that around 10% PEGylation was most effective to prolong the circulation time of liposomes for nuclear imaging of $^{99m}Tc-HMPAO-labeled$ liposomes in rats. Using various characteristics of molecules, we can deliver drugs into targets more effectively. We found that $^{99m}Tc-labeled$ biodegradable pullulan-derivatives are retained in tumor tissue in response to extracellular ion-strength. For the trafficking of various cells or bacteria in an intact animal, we used optical imaging techniques or radiolabeled cells. We monitored tumor-targeting bacteria by bioluminescent imaging techniques, dentritic cells by radiolabeling and neuronal stem cells by sodium-iodide symporter reporter gene imaging. In summary, we introduced recent achievements of molecular nuclear imaging technologies in targeting receptors for hepatocyte or inflammatory cells and in trafficking bacterial, immune and stem cells using molecular nuclear imaging techniques.

High-Resolusion Magnetic Resonance Imaging of Carotid Atherosclerotic Plaque (경동맥 죽상경화반의 고해상도 자기공명영상)

  • Byun, Woo-Mok;Cho, Jae-Ho
    • Journal of Yeungnam Medical Science
    • /
    • v.21 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • A thromboembolic stroke is believed to be precipitated by a rupture of vulnerable atheromatous plaques. Until recently the assessment of a further risk of stroke in high-risk patients in whom atherosclerosis has presented with a transient ischaemic attack (TIA), has been confined to a quantitative assessment of the luminal patency of the internal carotid artery. These traditional stratification parameters are no longer believed to be the most accurate predictors of a thrombo-embolism. This is because the process of vessel wall remodeling can maintain a luminal patency, and consequently, quite large friable plaques may remain unidentified. Accordingly, there is a need for an improved risk assessment. The fibrous cap of a vulnerable plaque is thinner, and an intraplaque hemorrhage and inflammation can occur during the development of atherosclerotic plaque. Several imaging methods for identifying vulnerable plaques have been developed. Recently, high resolution magnetic resonance (MR) imaging has emerged as an accurate non-invasive tool that can characterize the carotid plaque components in vivo. A High resolution carotid magnetic resonance is capable of distinguishing an intact, thick fibrous cap from a thin and ruptured cap in carotid plaque. In addition, a plaque MR can identify the active inflammation and detect a hemorrhage. High resolution carotid MR imaging is a valuable noninvasive method for quantifying the plaque components and identifying vulnerable plaque.

  • PDF