• 제목/요약/키워드: Nonequilibrium flow

검색결과 81건 처리시간 0.037초

A COMPUTATIONAL ANALYSIS OF FINITE RATE CHEMICALLY REACTING FLOW BY USING UPWIND N-S METHOD

  • Seo J. I.;Kwon C. O.;Song D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.166-171
    • /
    • 2000
  • A two-dimensional/axisymmetric CSCM upwind flux difference splitting Wavier-Stokes method has been developed to study the finite rate chemically react-ing invisicd and viscous hypersonic flows over blunt-body. A upwind method was chosen due to its robustness in capturing the strong bow shock waves. For the nonequilibrium chemically reacting air, NS-I species conservation equations were strongly coupled with flowfield equations through convection and species production terms. The nonequilibrium wall pressure and heat transfer rate distributions along the vehicle were compared with those from equilibrium and perfect gas calculations. The nonequilibrium species distribution shows the reduced concentrations of O and N species when compared with equilibrium species distribution. The solutions resolved strong bow shock waves md heat transfer rate very accurately when compared with central difference schemes.

  • PDF

난류연소 모델링을 이용한 수소-공기 비예혼합 화염의 NOx 생성 분석 (Analysis of NO Formation in Nonpremixed Hydrogen-Air Flames Considering Turbulence-Chemistry Interaction)

  • 박양호;문희장;김성룡;윤영빈;정인석
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.71-79
    • /
    • 1999
  • Numerical analysis on the characteristics of nitrogen oxides (NOx) formation in turbulent nonpremixed hydrogen-air flames was carried out. Lagrange IEM model and Assumed PDF model were applied to consider turbulence-chemistry interaction known to affect the production of NOx. Partial equilibrium assumption was used to predict nonequilibrium effect to which one-half power dependence between EINOx normalized by flame residence time and global strain rate is attributed. As a result. such one-half power dependence could be reproduced only by reaction model including $HO_{2}$and $H_{2}O_{2}$, which means its dependence on Damkohler number; nonequilibrium effect. This dependence was shown better in the region of higher global strain. Besides, the improvement of turbulence model is required to predict mean flow properties quantitatively in the radial direction.

  • PDF

Modeling of Liquid-Vapor Interfaces of Condensation Flows Based on Molecular Dynamics Simulations

  • Kannan, Hiroki;Teramoto, Susumu;Nagashima, Toshio
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.418-425
    • /
    • 2004
  • Characteristics of a liquid-vapor interface where a nonequilibrium condensation flow exists are considered based on molecular dynamics simulations, The condensation coefficient, the velocity distributions of the reflected and evaporated molecules and the number flux of the evaporated molecules are compared with those under the liquid-vapor equilibrium. The comparison shows that the condensation coefficient under the nonequilibrium condensation is slightly larger and the number flux of the evaporated molecules is considerably smaller than those under the liquid-vapor equilibrium. The net condensation flux under the nonequilibrium condensation is underestimated if it is evaluated from the condensation coefficient and the number flux of the evaporated molecules under the liquid-vapor equilibrium. However the underestimation is relatively small.

  • PDF

A Chemical Kinetic Model Including 54 Reactions for Modeling Air Nonequilibrium Inductively Coupled Plasmas

  • Yu, Minghao;Wang, Wei;Yao, Jiafeng;Zheng, Borui
    • Journal of the Korean Physical Society
    • /
    • 제73권10호
    • /
    • pp.1519-1528
    • /
    • 2018
  • The objective of the present study is the development of a comprehensive air chemical kinetic model that includes 11 species and 54 chemical reactions for the numerical investigation of air nonequilibrium inductively coupled plasmas. The two-dimensional, compressible Navier-Stokes equations coupled with the electromagnetic-field equations were employed to describe the fundamental characteristics of an inductive plasma. Dunn-Kangs 32 chemical-reaction model of air was reconstructed and used as a comparative model. The effects of the different chemical kinetic models on the flow field were analyzed and discussed at identical/different working pressures. The results theoretically indicate that no matter the working pressure is low or high, the use of the 54 chemical kinetic model presented in this study is a better choice for the numerical simulation of a nonequilibrium air ICP.

단순액체의 층밀리기 흐름에 대한 비평형 분자동력학 계산에서 공제방법의 효과 (The efficiency of subtraction technique in a nonequilibrium molecular dynamics simulation of a simple liquid shear flow)

  • 안성청
    • 한국시뮬레이션학회논문지
    • /
    • 제6권1호
    • /
    • pp.53-60
    • /
    • 1997
  • Results from a nonequilibrium molecular dynamics (NEMD) simulation are presented for an argon liquid subject to a shear flow. The segmented molecular dynamics method and the subtraction technique used in NEMD program to reduce the thermal fluctuation noise in data are studied with different shear rates. The standard deviation in the shear stress reduced from 0.030 to 0.004 by the segmented molecular dynamics method for 50 repeated segments. On the other hand, the standard deviation of the data remained the same when the subtraction technique was applied, where as the results of shear stress by constant value in a random way.

  • PDF

Novel nonequilibrium microwave emission and current-voltage characteristics of $Bi_2$$Sr_2$Ca$Cu_2$$O_{8+d}$ intrinsic Josephson junction mesas

  • Kim, Sun-Mi;Lee, Kie-Jin;Bae, Myung-Ho;Lee, Hu-Jong;Cha, Deok-Joon;Takayuki Ishibashi;Katsuaki Sato;Kim, Jin-Tae
    • Progress in Superconductivity
    • /
    • 제4권2호
    • /
    • pp.104-108
    • /
    • 2003
  • We have measured the transport properties of $Bi_2$$Sr_2$$CaCu_2$$O_{8+d}$ (BSCCO) intrinsic Josephson junction mesa. Transport measurements with current flow along the c-axis, perpendicular to the layer of mesa showed multi-branch structures on the current-voltage characteristics. For single intrinsic junctions, the microwave radiation appears in the form of three different modes of oscillations, which include Josephson emission, nonequilibrium broad emission and sharp coherent microwave emission. Mutual phase interactions between two-mesas structures of BSCCO intrinsic Josephson junctions were studied. The results were explained within the framework of the Josephson plasma excitation model due to quasiparticle injection.n.

  • PDF

하전모자이크 막을 사용하여 중금속이온의 분리 (Separation of Heavy Metal Ions across Novel Mosaic Membrane)

  • 송명관;이장우;양원강
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2005년도 추계 총회 및 학술발표회
    • /
    • pp.96-101
    • /
    • 2005
  • A theory for the material transports through ion exchange membrane has been developed on the basis of nonequilibrium thermodynamics by removing the assumption of solvent flow in the previous paper and applied to a detailed study of the ionic transport properties of new charged mosaic membrane(CMM) system. The CMM having two different fixed charges in the polymer membrane indicated unique selective transport behavior then ion-exchange membrane. The separation behavior of ion transport across the CMM with a parallel array of positive and negative functional charges were investigated. It was well-known the analysis of the volume flux and solute flux based on nonequilibrium thermodynamics. Our suggests preferential salt transport across the charged mosaic membranes. Transport properties of heavy metal ions, $Mg^{2+}$, $Mn^{2+}$and sucrose system across the charged mosaic membrane were estimated. As a result, we were known metal salts transport depended largely on the CMM. The reflection coefficient indicated the negative value that suggested preferential material transport and was independent of charged mosaic membrane thickness.

  • PDF

천음속 익형 유동에 있어서 비평형 응축이 충격파 진동에 미치는 영향 (Effect of Nonequilibrium Condensation on the Oscillation of the Terminating Shock in a Transonic Airfoil Flow)

  • 김진수;이성진;;권순범
    • 대한기계학회논문집B
    • /
    • 제36권1호
    • /
    • pp.61-66
    • /
    • 2012
  • 본 연구에서는 NACA0014 천음속 익형 유동에 있어서 비평형 응축이 Terminating shock 의 진동에 미치는 영향을 TVD 수치해석을 통하여 연구하였다. 주류 마하수 0.81-0.87 에 대해 정체점 상대습도가 유동 특성에 미치는 영향이 구명되었다. 받음각 ${\alpha}=0^{\circ}$ 정체점 온도(288K) 및 주류 마하수가 동일한 경우, 정체점 상대습도의 증가는 Terminating shock 의 충격파 강도를 약화시키고 충격파의 진동수도 감소시킨다. 정체점 상대습도가 동일한 경우는 주류 마하수가 클수록 충격파의 진동수는 증가한다. 정체점 상대습도가 동일한 경우, 충격파의 이동거리는 주류 마하수가 클수록 증가하는 것으로 나타났다. 특히, 충격파가 동일한 x/c 에 위치하는 경우, Terminating shock 의 충격파 강도는 충격파가 상류로 이동할 때가 하류로 이동할 때보다 강하게 된다.

난류 효과를 포함한 다중 충돌 제트의 냉각 특성에 대한 수치적 연구 (NUMERICAL STUDY ON COOLING CHARACTERISTICS OF MULTIPLE IMPINGING JETS INCLUDING THE EFFECT OF TURBULENCE)

  • 전진호;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 춘계학술대회논문집
    • /
    • pp.321-328
    • /
    • 2009
  • Free surface impinging jet on a moving plate, which is applicable to cooling of hot metals in a steel-making process, is investigated numerically by solving the Navier-Stokes equations in the liquid and gas phases. The free surface of liquid-gas interface is tracked by a level-set method which is improved by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further improved by employing a nonequilibrium $\kappa-\varepsilon$ turbulence model including the effect of low Reynolds number. The computations are made to investigate the effects of the nozzle pitch, moving velocity of plate and jet velocity on the interfacial motion and the associated flow and temperature fields.

  • PDF

부족팽창 습공기 제트의 마하디스크 거동에 관한 수치적 연구 (A Computational Study of the Mach Disk in Under-Expanded Moist Air Jet)

  • 백승철;권순범;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.514-519
    • /
    • 2003
  • A computational study is performed to clarify the characteristics of supersonic moist air jet issuing from a simple sonic nozzle. The effects of the initial supersaturation on the Mach disk diameter and location, the barrel shock wave and jet boundary structures are investigated in details. The axisymmetric, compressible, Navier-Stokes equations, coupled with droplet growth equation, are solved using a third-order MUSCL type TVD finite-difference scheme. It is found that the Mach disk diameter increases with an increase in relative humidity of moist air. while its location is not significantly dependent on the relative humidity. As the relative humidity increases, the barrel shock wave and jet boundary are more expanded due to the local static pressure rise of nonequilibrium condensation.

  • PDF