• Title/Summary/Keyword: Nondestructive quality measurement

Search Result 53, Processing Time 0.02 seconds

Development of On-line Sorting System for Detection of Infected Seed Potatoes Using Visible Near-Infrared Transmittance Spectral Technique (가시광 및 근적외선 투과분광법을 이용한 감염 씨감자 온라인 선별시스템 개발)

  • Kim, Dae Yong;Mo, Changyeun;Kang, Jun-Soon;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination($R^2_p$) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

THE NONDESTRUCTIVE MEASUREMENT OF THE SOLUBLE SOLID AND ACID CONTENTS OF INTACT PEACH USING VIS/NIR TRANSMITTANCE SPECTRA

  • Hwang, I.G.;Noh, S.H.;Lee, H.Y.;Yang, S.B.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.210-218
    • /
    • 2000
  • Since the SSC(soluble solid contents) and titratable acidity of fruit are highly concerned to the taste, the need for measuring them by non-destructive technology such as NIR(Visual and Near-infrared) spectroscopy is increasing. Specially, in order to grade the quality of each fruit with a sorter at sorting and packing facilities, technologies for online measurement satisfying the tolerance in terms of accuracy and speed should be developed. Many researches have been done to develop devices to measure the internal qualities of fruit such as SSC, titratable acidity, firmness, etc. with the VIS(Visual)/NIR(Near Infrared) reflectance spectra. The distributions of the SSC, titratable acidity, firmness, etc. are different with respect to the position and depth of fruit, and generally the VIS/NIR light can interact with fruit in a few millimeters of pathlength, and it is very difficult to measure the qualities of inner flesh of fruit. Therefore, to measure the average concentrations of each quality factor such as SSC and titratable acidity with the reflectance-type NIR devices, the spectra of fruit at several positions should be measured. Recently, the interest about the transmittance-type VIS/NIR devices is increasing. NIR light can penetrate through the fruit about 1/10-1/1,000,000 %. Therefore, very intensive light source and very sensitive sensor should be adopted to measure the transmitted light spectra of intact fruit. The ultimate purpose of this study was to develop a device to measure the transmitted light spectra of intact fruit such as apple, pear, peach, etc. With the transmittance-type VIS/NIR device, the feasibility of measurement of the SSC and titratable acidity in intact fruit cultivated in Korea was tested. The results are summarized as follows; A simple measurement device which can measure the transmitted light spectra of intact fruit was constructed with sample holder, two 500W-tungsten halogen lamps, a real-time spectrometer having a very sensitive CCD array sensor and optical fiber probe. With the device, it was possible to measure the transmitted light spectra of intact fruit such as apple, pear and peach. Main factors affecting the intensity of transmitted light spectra were the size of sample, the radiation intensity of light source and the integration time of the detector. Sample holder should be designed so that direct light leakage to the probe could be protected. Preprocessing method to the raw spectrum data significantly influenced the performance of the nondestructive measurement of SSC and titratable acidity of intact fruit. Representative results of PLS models in predicting the SSC of peach were SEP of 0.558 Brix% and R2 of 0.819, and those in predicting titratable acidity were SEP of 0.056% and R2 of 0.655.

  • PDF

Study of Ultrasound Imaging Technique for Diagnosing Osteoporosis (골다공증 진단을 위한 초음파 영상화 진단 기법 연구)

  • Kim, H.J.;Han, S.M.;Lee, J.H.;Lee, M.R.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.4
    • /
    • pp.386-392
    • /
    • 2002
  • Ultrasonic has been proposed as an attractive means of detecting bone loss. There have been several commercial ultrasound devices developed for measuring the heel to predict fracture at other bones. However, these devices select only single point of heel bone as measurement site. It causes poor assessment of bone quality due to the error of transducer positioning. In an effort to improve current ultrasound systems, we evaluated the linear scanning method which provides better prediction of bone quality and an accurate image of bone shape. The system used in this study biaxially scans a heel bone using automated linear scanning technique. The results demonstrated that the values of ultrasound parameters varied with different positions within bone specimen. It has been also found that the linear scanning method could better pre야ct bone quality, eliminating the error of transducer positioning.

Apple Quality Measurement Using Hyperspectral Reflectance and Fluorescence Scattering (하이퍼 스펙트랄 반사광 및 형광 산란을 이용한 사과 품질 측정)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Hyperspectral reflectance and fluorescence scattering have been researched recently for measuring fruit post-harvest quality and condition. And they are promising for nondestructive detection of fruit quality. The objective of this research was to develop a model, which measure the quality of apple by using hyperspectral reflectance and fluorescence. A violet laser (408 nm) and a quartz tungsten halogen light were used as light sources for generating laser induced fluorescence and reflectance scattering in apples, respectively. The laser induced fluorescence and reflectance of 'Golden Delicious' apples were measured by using a hyperspectral imaging system. Fruit firmness, soluble solids and acid content were measured using standard destructive methods. Principal component analyses were performed to extract critical information from both hyperspectral reflectance and fluorescence data and this information was then related to fruit quality indexes. The fluorescence models had poorer predictions of the three quality indexes than the reflectance models. However, the prediction models of integrating fluorescence and reflectance performed consistently better than the individual models of either reflectance or fluorescence. The correlation coefficient for fruit firmness, soluble solid content, and tillable acidity from the integrated model was 0.86, 0.75, and 0.66 respectively. Also the standard errors were 6.97 N, 1.05%, and 0.07% respectively.

Development of Calibration Target for Infrared Thermal Imaging Camera (적외선 열화상 카메라용 캘리브레이션 타겟 개발)

  • Kim, Su Un;Choi, Man Yong;Park, Jeong Hak;Shin, Kwang Yong;Lee, Eui Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.248-253
    • /
    • 2014
  • Camera calibration is an indispensable process for improving measurement accuracy in industry fields such as machine vision. However, existing calibration cannot be applied to the calibration of mid-wave and long-wave infrared cameras. Recently, with the growing use of infrared thermal cameras that can measure defects from thermal properties, development of an applicable calibration target has become necessary. Thus, based on heat conduction analysis using finite element analysis, we developed a calibration target that can be used with both existing visible cameras and infrared thermal cameras, by implementing optimal design conditions, with consideration of factors such as thermal conductivity and emissivity, colors and materials. We performed comparative experiments on calibration target images from infrared thermal cameras and visible cameras. The results demonstrated the effectiveness of the proposed calibration target.

Study on Quality Factor Measurement for Cherry Tomato using Color Imagery (칼라영상을 이용한 방울토마토 품질 인자 계측에 관한 연구)

  • Kim, Dae-Yong;Oh, Hyun-Keun;Lee, Nam-Keun;Kim, Young-Sik;Cho, Byung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.303-308
    • /
    • 2010
  • Surface color is the most important quality factor for the grade evaluation of cherry tomato. Color is one of the representative indicators for the maturity which is closely related to the internal quality of cherry tomato, such as firmness, sugar content, and acidity. This study was carried out to investigate the relationship between surface color and internal quality of cherry tomatoes harvested from both hydroponic and soil culture at different ripening stages. To calculate the color values of cherry tomatoes an automatic color imaging system was constructed. A specially designed image processing algorithm for the color measurement was developed. The color values of L*, a*, b* were calculated from the initial color values of RGB and then compared with the internal quality. Statistical analyses indicated that the internal quality was more highly correlated with the surface color than size of cherry tomatoes. Color image features were also investigated to detect external damage of cherry tomatoes. The value of (R value - R mean value)/R mean value was the most effective image feature for the detection of damaged areas on the surface of cherry tomatoes. The results of this study demonstrated the feasibility of color sorting process as an alternative of the conventional drum type size sorting system for cherry tomato industry.

Correlation Analysis between Ultrasonic Parameters and Elastic Modulus of Apple

  • Kim, Ghi-Seok;Kim, Ki-Bok;Park, Jeong-Gil;Lee, Sang-Dae;Jung, Hyun-Mo;Kim, Man-Soo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • The firmness of fruit is one of the most important quality factors and is highly correlated to the elastic modulus. In this study, the ultrasonic transmission method was applied to evaluate the elastic modulus of the apple. In order to transmit and receive the ultrasonic wave through the whole apple, the ultrasonic measurement setup consisted of ultrasonic pulser, two specially fabricated ultrasonic transducers for fruit and digital storage oscilloscope. Ultrasonic parameters such as ultrasonic wave velocity, apparent attenuation, and peak frequencies were analyzed. The elastic modulus of apple was measured by using compression test apparatus. The correlations between ultrasonic parameters and elastic modulus were analyzed. A multiple linear regression model describing the relationship between elastic modulus and ultrasonic parameters was proposed.

Nondestructive Estimation of Lean Meat Yield of South Korean Pig Carcasses Using Machine Vision Technique

  • Lohumi, Santosh;Wakholi, Collins;Baek, Jong Ho;Kim, Byeoung Do;Kang, Se Joo;Kim, Hak Sung;Yun, Yeong Kwon;Lee, Wang Yeol;Yoon, Sung Ho;Cho, Byoung-Kwan
    • Food Science of Animal Resources
    • /
    • v.38 no.5
    • /
    • pp.1109-1119
    • /
    • 2018
  • In this paper, we report the development of a nondestructive prediction model for lean meat percentage (LMP) in Korean pig carcasses and in the major cuts using a machine vision technique. A popular vision system in the meat industry, the VCS2000 was installed in a modern Korean slaughterhouse, and the images of half carcasses were captured using three cameras from 175 selected pork carcasses (86 castrated males and 89 females). The imaged carcasses were divided into calibration (n=135) and validation (n=39) sets and a multilinear regression (MLR) analysis was utilized to develop the prediction equation from the calibration set. The efficiency of the prediction equation was then evaluated by an independent validation set. We found that the prediction equation - developed to estimate LMP in whole carcasses based on six variables - was characterized by a coefficient of determination ($R^2_v$) value of 0.77 (root-mean square error [RMSEV] of 2.12%). In addition, the predicted LMP values for the major cuts: ham, belly, and shoulder exhibited $R^2_v$ values${\geq}0.8$ (0.73 for loin parts) with low RMSEV values. However, lower accuracy ($R^2_v=0.67$) was achieved for tenderloin cuts. These results indicate that the LMP in Korean pig carcasses and major cuts can be predicted successfully using the VCS2000-based prediction equation developed here. The ultimate advantages of this technique are compatibility and speed, as the VCS2000 imaging system can be installed in any slaughterhouse with minor modifications to facilitate the on-line and real-time prediction of LMP in pig carcasses.

Characteristics of The 1-3 Piezoelectric Composite Transducer Manufactured by Dicing-Filling Method (Dicing-Filling 방법으로 제작된 1-3 압전복합변환자의 특성)

  • Kim, W.S.;Yun, U.H.;Ok, C.I.;Kim, S.B.;Lee, J.K.;Lee, J.O.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.33-37
    • /
    • 2000
  • The 1-3 piezoelectric composite transducer with 75 volume percents PZT was fabricated by the dicing-filling method. The resonance modes of the 1-3 transducer have been studied with electric impedance measurement as a function of frequency. The fundamental frequencies of the planar and thickness mode were observed at 0.95MHz and 1.63MHz respectively, but the lateral mode was not observed. In the thickness mode, the electromechanical coupling coefficient of the 1-3 piezoelectric composite transducer, 0.54, was very closed to that of the single phase PZT(0.52). The pulse-echo response by exciting the 1-3 transducer with an electric pulse was observed from the water/reflector interface, and analyzed bandwidth by the spectrum of the impulse response. The quality factor Q for the 1-3 transducer was observed as 1.5 smaller than that of the single phase(80) and then the 1-3 transducer may be used to the broad band type transducer applications.

  • PDF