• 제목/요약/키워드: Nondestructive measurement

검색결과 587건 처리시간 0.023초

비파괴계측에 의한 사장교의 공용간 상시안전감시시스템 (The Real-time Health Monitoring System of a Cable-stayed Bridge Based on Non-destruction Measurement)

  • 최만용;강경구;김종우
    • 비파괴검사학회지
    • /
    • 제22권3호
    • /
    • pp.239-245
    • /
    • 2002
  • 현재까지 다양한 토목구조물들은 여러 가지 요인에 의한 노후화와 축척된 손상에도 불구하고 별다른 조치 없이 계속해서 사용되고 있었다. 따라서, 이러한 구조물들의 효율적인 유지관리를 유해 계측관리가 중요시되었다. 이에 본 논문에서는 비파괴계측에 의해 사장교의 실시간 계측모니터링시스템을 개발하고자 하며 이를 통해 교량의 안전관리를 하고자 하였다. 계측모니터링시스템은 교량의 유지관리를 도모하고, 교량 관리의 경제적 비용을 줄이게 되며 사장교의 새로운 설계 및 분석방법을 개발하는데 중요한 데이터를 제공할 것이다.

빌딩표면에 분포된 온도를 측정하기 위한 광섬유 BOTDA센서의 적용 (Application of fiber optic BOTDA sensor for measuring the temperature distributed on the surfaces of a building)

  • Kwon, Il-Bum;Kim, Chi-Yeop;Park, Man-Yong
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.505-510
    • /
    • 2002
  • We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4℃ through one day.

  • PDF

감마선을 이용한 소결 전 Fe/Ni 분말야금 판재의 밀도측정에 관한 연구 (Studies on Density Measurement of Green Fe/Ni P/M Sheet Using ${\gamma}-ray$)

  • 조경식;이종오;이상율;이주석
    • 비파괴검사학회지
    • /
    • 제12권3호
    • /
    • pp.7-11
    • /
    • 1992
  • Accurate measurement of green density of compacted part in the powder metallurgy industry is rather fundamental but extremely important process that decide the quality of the sintered part. In case of green sheet P/M product, the green density as well as the distribution of the density must be examined for the same reasons. Currently in most cases, density measuring process is being performed applying conventional Archimedes principles. However this method is not only time-consuming but also often inaccurate because of the inherent nature of the process, such as part sectioning, closing of surface porosity with wax and weighing in air and in water. Therefore, it is necessary to develop a faster and more accurate method to measure the density of green sheet P/M product. In this work, a nondestructive density measurement device using gamma-ray absorption principles was constructed and the optimum condition for measuring green density of P/M sheet and its distribution was sought. The results showed that this method was very effective in terms of measuring time and accuracy.

  • PDF

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.

한지의 산성도 측정을 위한 비파괴적 방법의 적용 (The application of a nondestructive method to measure the acidity of Korean papers)

  • 이혜윤;정용재;이규식;한성희
    • 보존과학연구
    • /
    • 통권20호
    • /
    • pp.21-47
    • /
    • 1999
  • According to damage of papers by the chemical cause, papers become to acidify. Among the 3 kinds of method measuring the acidity of paper, one was nondestructive method measuring the surface of the paper by flat type electrode and the others were destructive methods measuring directly by cold water extract method and hot water extract method. In case of the cellulolytic cultural properties, the latter methods were not applied because those methods must bedissociated papers. To measure the paper acidity nondestructively, we investigated the correlation of the nondestructive method and the destructive methods. The conclusions are as follows. 1) In the relationship of the cold water extract method and the hot water extract method, It was indicated that the pH measured by the hot water extract method was high quality printing paper 0.08, rough printing paper 0.13, and Korean paper 0.29 higher than that by the cold water extract method.2) In the relationship of the cold water extract method and the surface measurement method, It showed that the pH value measured by the cold water extract method was high quality printing paper 1.86, rough printing paper 0.80,and Korean paper 0.58 higher than value that by the surface measurement.3) In the relationship of the hot water extract method and the surface measurement method, It showed that the pH value measured by the hot ABSTRACT water extract method was high quality printing paper 1.78, rough printing paper 0.66, and Korean paper 0.29 higher than that by the surface measurement. From the above-mentioned results, the pH value measured by the surface measurement was need to high about 1.78∼1.86 in high quality printing paper, 0.66-0.80 in rough printing paper, and 0.29∼0.58 in Korean paper and the surface measurement with flat type electrode was very available to measure the acidity of Korean papers actually.

  • PDF

초음파 C-Scan을 이용한 구조용 세라믹스의 기계적 특성평가 (Evaluation of Mechanical Properties of Structural Ceramics ($Al_{2}O_{3}$) Using the High Frequency Ultrasonic C - Scan)

  • 장영권
    • 비파괴검사학회지
    • /
    • 제9권2호
    • /
    • pp.18-24
    • /
    • 1989
  • Computer-aided high frequency ultrasonic is applied to aluminum oxide(85w%, 94w%, 96w%, and 99w%) MOR(modulus of rupture) samples to evaluate mechanical properties such as density variation, pore content, elastic modulus, shear modulus, and poisson's ratio. Ultrasonic wave velocity and attenuation measurement techniques were used as an evaluator of such properties. Pulse-echo C-Scan images with different fate setting method using 50MHz center frequency 1 inch focal length transducer allows evaluation of density variation and pore content. Elastic modulus calculated with the relation of density and ultrasonic velocity. It shows good reliability as compared with resonance method. Sintered density variation of $0.025g/cm^{3}$, that is 0.6% of theoretical density in $Al_{2}O_{3}$ samples can be observed by ultrasonic velocity measurement. Attenuation measurement method qualitatively agree with 4-point fracture testing result concerning of porosity content.

  • PDF

A Method to Simulate Frictional Heating at Defects in Ultrasonic Infrared Thermography

  • Choi, Wonjae;Choi, Manyong;Park, Jeonghak
    • 비파괴검사학회지
    • /
    • 제35권6호
    • /
    • pp.407-413
    • /
    • 2015
  • Ultrasonic infrared thermography is an active thermography methods. In this method, mechanical energy is introduced to a structure, it is converted into heat energy at the defects, and an infrared camera detects the heat for inspection. The heat generation mechanisms are dependent on many factors such as structure characteristics, defect type, excitation method and contact condition, which make it difficult to predict heat distribution in ultrasonic infrared thermography. In this paper, a method to simulate frictional heating, known to be one of the main heat generation mechanisms at the closed defects in metal structures, is proposed for ultrasonic infrared thermography. This method uses linear vibration analysis results without considering the contact boundary condition at the defect so that it is intuitive and simple to implement. Its advantages and disadvantages are also discussed. The simulation results show good agreement with the modal analysis and experiment result.

Micro-Structure Measurement and Imaging Based on Digital Holography

  • Kim, Kyeong-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kee, Chang-Doo;Akhter, Naseem
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.257-260
    • /
    • 2010
  • Advancements in the imaging and computing technology have opened the path to digital holography for non-destructive investigations of technical samples, material property measurement, vibration analysis, flow visualization and stress analysis in aerospace industry which has widened the application of digital holography in the above fields. In this paper, we demonstrate the non-destructive investigation and micro-structure measurement application of digital holography to the small particles and a biological sample. This paper gives a brief description of the digital holograms recorded with this system and illustratively demonstrated.

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device

  • Jeon, E.S.;Kim, W.T.;Kim, I.S.;Park, H.
    • 비파괴검사학회지
    • /
    • 제30권3호
    • /
    • pp.207-211
    • /
    • 2010
  • In this paper, the fluid AID(acoustic inspection device) was developed to measure SOS(speed of sound) since fluids used in most of industrial fields have different properties and its equipment is highly expensive. From AID developed, it is intended to get potentially the capability to distinguish the kind of fluid using the measurement by the SOS at various fields. In order to measure the sound speed of specific fluids, the measurement system and ultrasonic sensors are composed. The fluid used in the experimental work are soybean oil, glycerin, diesel oil and the error of time difference due to the container wall is extracted for preliminary experiment. As results, the variations of sound speed according to the temperature change of target fluid were analyzed and the polynomial equations were proposed.

Application of Generalized Lamb Wave for Evaluation of Coating Layers

  • Kwon, Sung-Duk;Kim, Hak-Joon;Song, Sung-Jin
    • 비파괴검사학회지
    • /
    • 제27권3호
    • /
    • pp.224-230
    • /
    • 2007
  • This work is aimed to explore a possibility of using the generalized Lamb waves for nondestructive evaluation of the bonding quality of layered substrates. For this purpose, we prepared two sets of specimens with imperfect bonding at their interfaces; 1) TiN-coated specimens with various wear conditions, and 2) CVD diamond specimens with various cleaning conditions. A dispersion simulation performed for layered substrates with imperfect interfaces are carried out to get the characteristics of dispersion curves that can be used for bonding quality evaluation. Then the characteristics of dispersion curves of the fabricated specimens are experimentally determined by use of an ultrasonic backward radiation measurement technique. The results obtained in the present study show that the lowest velocity mode (Rayleigh-like) of the generalized Lamb waves are sensitively affected by the bonding quality. Therefore, the generalized Lamb waves can be applied for nondestructive evaluation of imperfect bonding quality in various layered substrates.