• Title/Summary/Keyword: Nondestructive Method

Search Result 1,140, Processing Time 0.022 seconds

A Feasibility Study on the Application of Ultrasonic Method for Surface Crack Detection of SiC/SiC Composite Ceramics (SiC/SiC 복합재료 세라믹스 표면균열 탐지를 위한 초음파법 적용에 관한 기초연구)

  • Nam, Ki-Woo;Lee, Kun-Chan;Kohyama, Akira
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.479-484
    • /
    • 2009
  • Nondestructive evaluation(NDE) of ceramic matrix composites is essential for developing reliable ceramics for industrial applications. In the work, C-Scan image analysis has been used to characterize surface crack of SiC ceramics nondestructively. The possibility of detection of surface crack were carried out experimentally by two types of ultrasonic equipment of SDS-win and $\mu$-SDS, and three types of transducer of 25, 50 and 125 MHz. A surface micro-crack of ceramics was not detected by transducer of 25 MHz and 50 MHz. Though the focus method was detected dimly the crack by transducer of 125 MHz, the defocus method could detect the shape of diamond indenter. As a whole, the focus method and the defocus method came to the conclusion that micro crack have a good possibility for detection.

A Study on the Modeling of Electromagnetic Wave Propagation for the Detection of a Delamination in Concrete Specimens (콘크리트 내의 공동탐사를 위한 전자기파 모델링)

  • 조윤범;임홍철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.119-124
    • /
    • 2000
  • The radar method is becoming one of the major nondestructive testing (NDT) techniques for concrete structures. Numerical modeling of electromagnetic wave is needed to analyze radar measurement results and to study the influence of measurement parameters on the radar measurements. Finite difference-time domain (FD-TD) method is used to simulate electromagnetic wave propagation through concrete specimens. Three concrete specimens with a 25 mm delamination embedded at 25 mm, 50 mm, and 75mm depth are modeled in 3-dimension. Also, thickness change of delamination and permittivity change are modeled.

  • PDF

A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

  • Jung, Hee-Jun;Song, Sung-Jin;Kim, Chang-Hwan;Kim, Dea-Kwang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

A Structural Damage Identification Method Based on Spectral Element Model and Frequency Response Function

  • Lee, U-Sik;Min, Seung-Gyu;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.6
    • /
    • pp.559-565
    • /
    • 2003
  • A spectral element model-based structural damage identification method (SDIM) was derived in the previous study by using the damage-induced changes in frequency response functions. However the previous SDIM often provides poor damage identification results because the nonlinear effect of damage magnitude was not taken into account. Thus, this paper improves the previous SDIM by taking into account the nonlinear effect of damage magnitude. Accordingly an iterative solution method is used in this study to solve the nonlinear matrix equation for local damages distribution. The present SDIM is evaluated through the numerically simulated damage identification tests.

Tow-dimensional Strain Analysis by Fourier Transform Moire Interferometry (Fourier 변환 모아레 간섭에 의한 이차원적 변형률 해석)

  • Park, T.W.;Shimada, T.;Morimoto, Y.;Han, E.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 1992
  • Moire interferometry using a diffraction grating and a laser is a powerful technique for analizing small deformation of a specimen. In the method, the x and y-directional fringe patterns are obtained by using the x and y-directional sets of two beams. If the both sets of two beams are simultaneously incident to the specimen, the x and y-directional fringe patterns are super imposed. In this case, it is difficult to separate each directional fringe pattern. Therefore each fringe pattern has been separately recorded by selecting each set of two beams. In order to analyze a two-dimensional strain changing with time, Moire interferometry using the two-dimensional fourier transform method is proposed and the x and y-directional fringes are separated. By this method, the thermal deformation of a glass plate is analyzed.

  • PDF

Development and Application to Fracture Mechanics of Composites with Arbitrary Fiber Size (임의형태(任意形態)의 섬유(纖維)를 가진 복합재료(複合材料) 개발(開發)과 파괴역학(破壞力學)에의 응용(應用)(I) (시편제작을 중심으로))

  • Park, Jung-Do
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.1
    • /
    • pp.7-14
    • /
    • 1993
  • In order to analyze the stress distribution and stress concentration factors in composite materials, especially, in the short fiber of the reinforced composite materials by photoelastic method, it is necessary to develop the photoelastic model material having short fibers with arbitrary size and orientation. In this paper, the orthotropic photoelastic model material having short fibers for the transparent type photoelastic device was developed by the embedded corrosion fiber method. It was found that the model material was satisfactory to the properties of photoelastic model material, and also that the embedded corrosion fiber method can be employed for developing a model material with arbitrary size and direction to analyze the stress distribution and crack problems of composite materials.

  • PDF

Material property evaluation of high strength concrete using conventional and nondestructive testing method (재래 및 비파괴검사를 이용한 고강도 콘크리트의 재료특성에 관한 연구)

  • 조영상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.629-634
    • /
    • 2001
  • This study is to characterize the material property of early age high performance concrete emphasizing compressive strength using nondestructive testing methods. Three high performance concrete slabs of 600, 850 and 1100kg/$cm^{2}$ compressive strengths were prepared together with cylinders from same batches. Cylinder tests were peformed at the ages of 7, 14, 21 and 28 days after pouring. Using the impact echo method, the compression wave velocities were obtained based on different high performance concrete ages and compressive strengths. The equation to obtain the compressive strengths of high performance concrete has been developed using the obtained compression wave velocities. Using the SASW (spectral analysis of surface wave) method, the equation have also been developed to obtain the compressive strengths of high performance concrete based on the surface wave velocities.

  • PDF

Determination of the Stress Intensity Factor by the Method of Caustics (CAUSTICS방법에 의한 응력확대계수 결정)

  • Kim, S.C.;Lee, O.S.;Han, M.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.22-29
    • /
    • 1988
  • The optical method of reflected and transmitted caustics has been utilized in mechanics investigations. This relatively new experimental technique has been successfully applied on various fracture analysis such as static and dynamic c rack propagation studies, some elasticity problems and contact stress, etc, In this study, the stress intensity factors in thin polycarbonate specimens, a kind of optically anisotropic material, under Mode I loading condition are estimated by the method of caustics. The values of stress intensity factors obtained from theoretical caustics shape are compared by the experiment. It is confirmed that the two stress intensity factors agree well with Srawley's solution.

  • PDF

Structural Damage Monitoring of Harbor Caissons with Interlocking Condition

  • Huynh, Thanh-Canh;Lee, So-Young;Nguyen, Khac-Duy;Kim, Jeong-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.6
    • /
    • pp.678-685
    • /
    • 2012
  • The objective of this study is to monitor the health status of harbor caissons which have potential foundation damage. To obtain the objective, the following approaches are performed. Firstly, a structural damage monitoring(SDM) method is designed for interlocked multiple-caisson structures. The SDM method utilizes the change in modal strain energy to monitor the foundation damage in a target caisson unit. Secondly, a finite element model of a caisson system which consists of three caisson units is established to verify the feasibility of the proposed method. In the finite element simulation, the caisson units are constrained each other by shear-key connections. The health status of the caisson system against various levels of foundation damage is monitored by measuring relative modal displacements between the adjacent caissons.