• Title/Summary/Keyword: Nondestructive Inspection

Search Result 506, Processing Time 0.025 seconds

A Study on the Behavior of Ultrasonic Guided Wave Mode in a Pipe Using Comb Transducer (Comb Transducer를 이용한 파이프 내 유도초음파 모드의 거동에 관한 연구)

  • Park, Ik-Keun;Kim, Yong-Kwon;Cho, Youn-Ho;Ahn, Yeon-Shik;Cho, Yong-Sang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.142-150
    • /
    • 2004
  • A preliminary study of the behavior of ultrasonic guided wave mode in a pipe using a comb transducer for maintenance inspection of power plant facilities has been verified experimentally. The mode identification has been carried out in a pipe using the time-frequency analysis methods such as the wavelet transform(WT) and the short time Fourier transform (STFT), compared with theoretically calculated group velocity dispersion curves for longitudinal and flexural modes. The results are in good agreement with analytical predictions and show the effectiveness of using the time-frequency analysis method to identify the individual modes. It was found out that the longitudinal mode(0,1) is less affected by mode conversion compared with the other modes. Therefore, L(0,1) is selected as an optimal mode for the evaluation of the surface defect in a pipe.

A Study on a Crack Evaluation Technique for Turbine Blade Root Using Phased Array Ultrasonics (위상배열 초음파를 이용한 터빈 블레이드 루트부내 결함평가 기법 연구)

  • Cho, Yong-Sang;Jung, Gye-Jo;Park, Sang-Ki;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.151-157
    • /
    • 2004
  • Ultrasonic testing is a kind of nondestructive test to detect a crack or discontinuity in materials or on material surfaces by sending ultrasound to it. This conventional ultrasonic technique has some limitations in reliably detecting crack or accurately assessing materials in the case of complex-shaped power plant components such as a turbine blade root. An alternative method for such a difficult inspection is highly needed. In this study, application of a phased array ultrasonic testing (UT) system to a turbine blade, one of the critical power plant components, has been considered, and the particular incident angle has been determined so that the greatest track detectability and the most accurate crack length evaluation nay be achieved. The response of ultrasonic phased array was also analyzed to establish a special method to determine the track )ength without moving the transducer. The result showed that the developed method for crack length assessment is a more accurate and effective method, compared with the conventional method.

Evaluation of Material Properties of Concrete Harbour Facilities Using Nondestructive Testing Methods (비파괴시험에 의한 콘크리트 항만시설물의 주요 물성치 평가)

  • Yi, Jin-Hak;Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Recently harbor remodeling projects are seriously considered to enhance the loading and unloading capability of old container terminals and to make decrepit ports as eco-friendly harbor and waterfront spaces in many countries. In such a case, quantitative and qualitative evaluations on concrete harbor facilities are mandatory to determine the current structural integrity condition of aged materials. Once the remodeling project is determined to be carried out, the reusability of individual structural members and facilities including caissons, cell-blocks, and tetra-pods need to be decided based on the simple and economic visual inspection and/or nondestructive testing. In this study, the systematic quantitative evaluation procedure for determining the structural integrity condition and the reusability is studied based the nondestructive testing and evaluation methods. Conventional methods including Schmidt hammer test and ultrasonicpulse velocity methods and elastic wave based methods including impact echo test and surface wave test are applied to the old harbor facilities in five different sites. The compressive tests are also carried out to determine the elastic modulus and compressive strength of concrete materials.

Automatic Noncontact Ultrasonic Inspection Technique (비접촉식 초음파탐상방법 자동화 기술)

  • Kim, Y.G.;Ahn, B.Y.;Lee, S.S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.13 no.4
    • /
    • pp.25-31
    • /
    • 1994
  • A system for EMAT, which generates ultrasound by electro-magnectic forces and performs nondestructive testing in noncontact, was established. By linking it with a 3 axis scanning system and a data acquisition and processing system the automation of EMAT testing was attempted. A EMAT sensor was fabricated and the directivity pattern of it was measured. To be suitable automation, it has a transmitter and a receiver in one case and the main beam direction of it can be controlled by the frequency of driving signal. A program which controls the EMAT system, the 3 axis scanner and the data acquisition and processing system was developed. It also processes acquired data and displays the processing results. IBM-PC/AT compatible PC was used as main controller and the stratage of the program is emulation of real devices on the PC monitor. To provide the performance of the established EMAT system, two aluminium blocks containing artificial flaws and a welded aluminium block were tested. The result of the tests were satisfactory.

  • PDF

Evaluation of Internal Defect of Composite Laminates Using A Novel Hybrid Laser Generation/Air-Coupled Detection Ultrasonic System (레이저 발생 초음파와 공기 정합 수신 탐촉자를 이용한 복합재료 적층판의 내부 박리 결함 평가)

  • Lee, Joon-Hyun;Lee, Seung-Joon;Byun, Joon-Hyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.1
    • /
    • pp.46-53
    • /
    • 2008
  • Ultrasonic C-scan technique is one of very popular techniques being used for detection of flaws in polymer matrix composite(PMC). However, the application of this technique is very limited for evaluation of defects in PMC fabricated by the automated fiber placement process. The purpose of this study is to develop a novel ultrasonic hybrid system based on nondestructive and non-contact ultrasonic techniques for evaluation of delamination in carbon/epoxy and carbon/PPS composite laminates. It was shown that the newly developed ultrasonic hybrid system based on dual air-coupled pitch-catch technique with ultrasonic scattering reflection concept could provide excellent image with higher resolution of delamination in PMC compared with the conventional pitch-catch method. It is expected that this ultrasonic hybrid technique can be applied for on-line inspection of flaws in PMC during the fabrication process.

Ultrasonic Characterization on Sequences of CFRP Composites Based on Modeling and Motorized System

  • Im, Kwang-Hee;David K. Hsu;Song, Sung-Jin;Park, Je-Woung;Sim, Jae-Ki;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.65-73
    • /
    • 2004
  • Composites are a material class for which nondestructive material property characterization is as important as flaw detection. Laminates of fiber reinforced composites often possess strong in-plane elastic anisotropy attributable to the specific fiber orientation and layup sequence when waves are propagating in the thickness direction of composite laminates. So the layup orientation greatly influences its properties in a composite laminate. It could result in the part being .ejected and discarded if the layup orientation of a ply is misaligned. A nondestructive technique would be very beneficial, which could be used to test the part after curing and requires less time than the optical test. Therefore a ply-by-ply vector decomposition model has been developed, simplified, and implemented for composite laminates fabricated from unidirectional plies. This model decomposes the transmission of a linearly polarized ultrasound wave into orthogonal components through each ply of a laminate. Also in order to develop these methods into practical inspection tools, motorized system have been developed for different measurement modalities for acquiring ultrasonic signals as a function of in-plane angle. It is found that high probability shows between the model and tests developed in characterizing cured layups of the laminates.

Development of Automated Ultrasonic Testing System for Partial Joint-Weld of Heat Exchanger's Header to Tube in Power Plant (발전소 열교환기 헤더와 튜브의 부분 용입형 용접부 초음파 자동검사시스템 개발)

  • Lee, Jin-Hyuk;Lim, Seong-Jin;Park, Ik-Keun;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.367-372
    • /
    • 2010
  • A power plant's heat exchangers work under poor conditions, such as high temperature, high pressure, corrosion, mechanical stress and vibration. Especially, partial joint-weld of heat exchanger's header to stub-tube is the place where incomplete penetration flaws can easily occur. But, it is hard to evaluate the safety of the structure by conventional nondestructive testing techniques. So it is necessary to test integrity of the weld inside and to develop testing technique and equipment that can detect the flaws at the weld point in order to enhance reliability of the test result. In this study, we developed a suitable automated ultrasonic testing system that can inspect the partial joint-weld of header to stub-tube of power plant. Finally, we showed the efficiency of the automated ultrasonic-testing-system from the application.

X-ray Computed Tomography on Larger Diameter Timber than Digital Detector

  • Kim, Chul-Ki;Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • X-ray computed tomography is a very powerful nondestructive technique in safety inspection of historic timber building. But, in field, various testing condition makes it difficult to carry out X-ray CT testing. Limited size in X-ray digital detector is one of the problems. In this study, a pitch pine disk with two holes was used to know how imperfection in X-ray projection affects CT image resolution. Using various number of projections, CT image was reconstructed by filtered back projection method, and then it was investigated how many projection is required to identify the holes in different location. Two artificial holes could be differently detected according to their location in cross section of specimen. One hole in center part of specimen was identified using more than 9 radiographs, but the other one which located in outer part of cross section could not be detected until more than 36 projections were used. Even though there is data missing in outer part of cross section due to limited size of detector, the center part of CT image could be reconstructed well and the resolution of outer part became higher with increase of the number of projections. For field application, the number of projections for CT image reconstruction needs to be decided with consideration of another nondestructive testing and the location of interest.

A Study on the Non-Contact Detection Technique of Defects Using AC Current - The Influence of Frequency and lift-off - (교류전류를 이용한 비접촉결함탐상법에 관한 연구 - 주파수 lift-off의 영향 -)

  • Kim, Hoon;Na, Eu-Gyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.53-58
    • /
    • 2002
  • New nondestructive inspection (NDI) technique to detect the defect in metal was developed in which an electromagnetic field is induced in a metal by AC current flowing in the magnetic coil and the leak magnetic-flux disturbed by defects is measured using a tape-recorder head with air gap. This technique can be applied in evaluating the location and sizing of surface defects in components of the ferromagnetic body by means of the non-contacting measurement. In this paper, we have applied this technique to the evaluation of two-dimensional surface cracks in ferromagnetic metal, and also investigated the influence of the various frequencies and lift-off. Defects were detected with maximum values in the distribution of voltage and it was found that the maximum values tend to increase with the defect depth. Although the maximum values for defects are affected by the frequency and lift-off, the depth of small defects can be estimated from the linear relationship between the depth and voltage rate$(V_0/V_{ave})$.

Eddy Current Flaw Characterization Using Neural Networks (신경회로망을 이용한 와전류 결함 특성 평가)

  • Song, S.J.;Park, H.J.;Shin, Y.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.6
    • /
    • pp.464-476
    • /
    • 1998
  • Determination of location, shape and size of a flaw from its eddy current testing signal is one of the fundamental issues in eddy current nondestructive evaluation of steam generator tubes. Here, we propose an approach to this problem; an inversion of eddy current flaw signal using neural networks trained by finite element model-based synthetic signatures. Total 216 eddy current signals from four different types of axisymmetric flaws in tubes are generated by finite element models of which the accuracy is experimentally validated. From each simulated signature, total 24 eddy current features are extracted and among them 13 features are finally selected for flaw characterization. Based on these features, probabilistic neural networks discriminate flaws into four different types according to the location and the shape, and successively back propagation neural networks determine the size parameters of the discriminated flaw.

  • PDF