• Title/Summary/Keyword: Noncontact optical sensor

Search Result 12, Processing Time 0.03 seconds

A Noncontact Optical Sensor Development for Measuring the Thickness of Transparent Plates (투명판의 두께 측정용 비접촉식 광센서 개발)

  • Ryu, Young-Kee;Oh, Choonsuk;Lee, Seoyoung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.1 s.307
    • /
    • pp.1-6
    • /
    • 2006
  • The noncontact optical sensor using the hologram laser and automatic power controller is developed to measure a thickness of transparent objects and achieve excellent performance. Due to the contact between the tip of the sensor and the surface of objects, the tip is abraded. In addition the casting glass under high temperature results in extending the size of sensor body. The accuracy of the sensor is degraded due to these reasons. In this paper, to overcome these problems, we proposed a low cost non-contact optical sensor that is composed of a hologram laser unit used for optical pickup of CD player and a plastic lens. Therefore the problems caused by the contact sensor are solved by using the noncontact sensor. The noncontact sensor has to move toward the objects and obtain the focus error signal to measure a position of transparent objects. While the internal temperature of the sensor is controlled under ${\pm}0.1^{\circ}$, many trials shows ${\pm}2{\mu}m$ measurement error as excellent performance.

Feasibility study on the development of noncontact temperature sensor using infrared optical fiber (적외선 투과 광섬유를 이용한 비접촉식 온도 센서 개발을 위한 기초 연구)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Chung, Soon-Cheol;Tack, Gye-Rae;Jun, Jae-Hoon;Lee, Bong-Soo;Son, Sang-Hee;Cho, Seung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.179-185
    • /
    • 2006
  • We have developed a noncontact temperature sensor using a silver halides infrared optical fiber. An infrared radiation from a heat source is transferred by a silver halides infrared optical fiber and measured by infrared sensors such as a thermopile and a thermal optical power-meter. The relationships between the temperature of a heat source and the output voltage of the thermopile and the optical power of a thermal optical power-meter are determined. The measurable temperature range using a thermopile and a thermal optical power-meter are from 100 to $750^{\circ}C$ and from 30 to $750^{\circ}C$ respectively. It is expected that a noncontact temperature sensor using infrared optical fiber can be developed for medical and industrial usages based on the results of this study.

Development of a noncontact optical sensor for measuring the shape of transparent plates (평판 투명 물체의 형상측정을 위한 비접촉식 광센서 개발)

  • 윤상필;유영기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.214-214
    • /
    • 2000
  • This paper deals with the non contact optical sensor to measure the shape of transparent plates such as glass panel of LCD(Liquid Crystal Display). The conventional methods to obtain the shape or thickness of a transparent plates are contact type sensor such as LVOT(Linear Variable Differential Transformer). Due to the contact between the tip of the sensor and the surface of objects, the tip is abraded. In addition, the high temperature glass casting makes the size of sensor body changed. These reasons makes the sensor degraded. In this paper, to overcome these problem, we proposed a low cost noncontact optical sensor this is composed of the Hologram laser unit of a CD-Pickup and a plastic lens. To evaluate the performance of the proposed optical sensor, a series of experiments were performed for various measurement condition. Based upon observation of the experimental result, the developed sensor shows good result for measuring the shape of transparent plates.

  • PDF

Development of a Fiber-optic Noncontact Temperature Sensor for Measuring the Temperature of Cooled Secondary Water in a Nuclear Power Plant (냉각된 원전 2차계통수의 온도측정을 위한 비접촉식 광섬유 온도센서의 개발)

  • Yoo, Wook-Jae;Lee, Bong-Soo;Park, Byung-Gi;Cho, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1730-1734
    • /
    • 2010
  • Generally, a pH value of secondary water in a nuclear power plant should be estimated after sampling and cooling down. In this process, the measurement of temperature is very important because a pH value is varied according to the temperature of secondary water. In this study, a noncontact fiber-optic temperature sensor using a silver halide optical fiber is fabricated to measure the temperature of cooled secondary water. And we have measured an infrared radiation, which is transferred by a silver halide optical fiber from a heat source, using a thermopile sensor. The relationships between the temperature of a heat source and the output voltage of the fiber-optic temperature sensor according to the change of distance and angle are determined. The measurable temperature range of the fiber-optic temperature sensor is from 25 to $60^{\circ}C$. Based on the results of this study, a noncontact temperature sensor using a silver halide optical fiber can be developed for the temperature measurement of the pH sample in the secondary water system.

Development of Noncontact Temperature Sensor Using Silver Halide Optical Fiber for Medical Usages (Silver Halide 광섬유를 이용한 의료용 비접촉식 온도 센서 개발)

  • Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Chung, Soon-Cheol;Tack, Gye-Rae;Lee, Bong-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.337-342
    • /
    • 2006
  • We have developed a noncontact temperature sensor using a silver halide optical fiber. The infrared collimator and focus head are connected both ends of a silver halide optical fiber with SMA connectors and used to collimate radiations of a heat source and to focus them to infrared sensors such as a pyroelectric sensor and a thermopile sensor, respectively. The relation ships between the temperatures of a heat source and the output signals of the infrared sensors are determined to measure the surface temperature of a heat source. The measurable temperature range is from 25 to $60^{\circ}C$. It is expected that a noncontact temperature sensor using a silver halide optical fiber can be developed for medical usages such as temperature monitoring during hyperthermia, cryosurgery, laser surgery and diagnostic procedure based on the results of this study.

The applicability of noncontact sensors in the field of rehabilitation medicine

  • Yoo Jin Choo;Jun Sung Moon;Gun Woo Lee;Wook-Tae Park;Min Cheol Chang
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.1
    • /
    • pp.53-55
    • /
    • 2024
  • A noncontact sensor field is an innovative device that can detect, measure, or monitor physical properties or conditions without direct physical contact with the subject or object under examination. These sensors use a variety of methods, including electromagnetic, optical, and acoustic technique, to collect information about the target without physical interaction. Noncontact sensors find wide-ranging applications in various fields such as manufacturing, robotics, automobiles, security, environmental monitoring, space industry, agriculture, and entertainment. In particular, they are used in the medical field, where they provide continuous monitoring of patient conditions and offer opportunities in rehabilitation medicine. This article introduces the potential of noncontact sensors in the field of rehabilitation medicine.

Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement (초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템)

  • O, Se-Baek;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

Measurements of temperature distribution using an infrared optical fiber during radiofrequency ablation (적외선 투과 광섬유를 이용한 고주파 열치료 과정에서의 온도분포 측정)

  • Yoo, Wook-Jae;Seo, Jeong-Ki;Cho, Dong-Hyun;Jang, Kyoung-Won;Shin, Sang-Hun;Lee, Bong-Soo;Tack, Gye-Rae;Park, Byung-Gi;Moon, Joo-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.397-405
    • /
    • 2008
  • In this study, we have measured temperature distribution using infrared optical fibers during radiofrequency ablation (RFA). Infrared radiations generated from the water around inserted electrode are transferred by silver halide optical fibers and are measured by a thermopile sensor. Also, the output voltages of a thermopile sensor are compared with those of the thermocouple recorder. It is expected that a noncontact temperature sensor using an infrared optical fiber can be developed for the temperature monitoring during RFA treatments based on the results of this study.

Noncontact optical system for measurement of displacement and vibration (미소 변위 진동측정을 위한 광학 시스템 설계 및 제작)

  • Hwang, Woong;Kwon, Jin-Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.3
    • /
    • pp.260-265
    • /
    • 2003
  • A noncontact optical system that can measure displacement or vibration of an object is designed by employing the oblique ray method. By using a single convex lens which serves as both the input and output lenses, we made the optical system very compact and reliable. In addition, the bandwidth of the vibration measurement is more than 100 KHz by using the position-sensitive detector as the beam position sensor. The resolution and capture range of the system are $\pm$1 ${\mu}{\textrm}{m}$ and 1100 ${\mu}{\textrm}{m}$, respectively. As a sample test, the vibrations of a speaker and a rotating compact disc surface were measured.