• Title/Summary/Keyword: Non-uniqueness Problem

Search Result 40, Processing Time 0.024 seconds

3D Modeling and Inversion of Magnetic Anomalies (자력이상 3차원 모델링 및 역산)

  • Cho, In-Ky;Kang, Hye-Jin;Lee, Keun-Soo;Ko, Kwang-Beom;Kim, Jong-Nam;You, Young-June;Han, Kyeong-Soo;Shin, Hong-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.119-130
    • /
    • 2013
  • We developed a method for inverting magnetic data to recover the 3D susceptibility models. The major difficulty in the inversion of the potential data is the non-uniqueness and the vast computing time. The insufficient number of data compared with that of inversion blocks intensifies the non-uniqueness problem. Furthermore, there is poor depth resolution inherent in magnetic data. To overcome this non-uniqueness problem, we propose a resolution model constraint that imposes large penalty on the model parameter with good resolution; on the other hand, small penalty on the model parameter with poor resolution. Using this model constraint, the model parameter with a poor resolution can be effectively resolved. Moreover, the wavelet transform and parallel solving were introduced to save the computing time. Through the wavelet transform, a large system matrix was transformed to a sparse matrix and solved by a parallel linear equation solver. This procedure is able to enormously save the computing time for the 3D inversion of magnetic data. The developed inversion algorithm is applied to the inversion of the synthetic data for typical models of magnetic anomalies and real airborne data obtained at the Geumsan area of Korea.

EXISTENCE OF LARGE SOLUTIONS FOR A QUASILINEAR ELLIPTIC PROBLEM

  • Sun, Yan;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.217-231
    • /
    • 2010
  • We consider a class of elliptic problems of a logistic type $$-div(|{\nabla}_u|^{m-2}{\nabla}_u)\;=\;w(x)u^q\;-\;(a(x))^{\frac{m}{2}}\;f(u)$$ in a bounded domain of $\mathbf{R}^N$ with boundary $\partial\Omega$ of class $C^2$, $u|_{\partial\Omega}\;=\;+{\infty}$, $\omega\;\in\;L^{\infty}(\Omega)$, 0 < q < 1 and $a\;{\in}\;C^{\alpha}(\bar{\Omega})$, $\mathbf{R}^+$ is non-negative for some $\alpha\;\in$ (0,1), where $\mathbf{R}^+\;=\;[0,\;\infty)$. Under suitable growth assumptions on a, b and f, we show the exact blow-up rate and uniqueness of the large solutions. Our proof is based on the method of sub-supersolution.

UNIQUENESS RELATED TO HIGHER ORDER DIFFERENCE OPERATORS OF ENTIRE FUNCTIONS

  • Xinmei Liu;Junfan Chen
    • The Pure and Applied Mathematics
    • /
    • v.30 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • In this paper, by using the difference analogue of Nevanlinna's theory, the authors study the shared-value problem concerning two higher order difference operators of a transcendental entire function with finite order. The following conclusion is proved: Let f(z) be a finite order transcendental entire function such that λ(f - a(z)) < ρ(f), where a(z)(∈ S(f)) is an entire function and satisfies ρ(a(z)) < 1, and let 𝜂(∈ ℂ) be a constant such that ∆𝜂n+1 f(z) ≢ 0. If ∆𝜂n+1 f(z) and ∆𝜂n f(z) share ∆𝜂n a(z) CM, where ∆𝜂n a(z) ∈ S ∆𝜂n+1 f(z), then f(z) has a specific expression f(z) = a(z) + BeAz, where A and B are two non-zero constants and a(z) reduces to a constant.

WEAK SOLUTION OF AN ARCH EQUATION ON A MOVING BOUNDARY

  • DAEWOOK KIM;SUDEOK SHON;JUNHONG HA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • When setting up a structure with an embedded shallow arch, there is a phenomenon where the end of the arch moves. To study the so-called moving domain problem, one try to transform a considered noncylindrical domain into the cylindrical domain using the transform operator, as well as utilizing the method of penalty and other approaches. However, challenges arise when calculating time derivatives of solutions in a domain depending on time, or when extending the initial conditions from the non-cylindrical domain to the cylindrical domain. In this paper, we employ the transform operator to prove the existence and uniqueness of weak solutions of the shallow arch equation on the moving domain as clarifying the time derivatives of solutions in the moving domain.

On the Solution Method for the Non-uniqueness Problem in Using the Time-domain Acoustic Boundary Element Method (시간 영역 음향 경계요소법에서의 비유일성 문제 해결을 위한 방법에 관하여)

  • Jang, Hae-Won;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • The time-domain solution from the Kirchhoff integral equation for an exterior problem is not unique at certain eigen-frequencies associated with the fictitious internal modes as happening in frequency-domain analysis. One of the solution methods is the CHIEF (Combined Helmholtz Integral Equation Formulation) approach, which is based on employing additional zero-pressure constraints at some interior points inside the body. Although this method has been widely used in frequency-domain boundary element method due to its simplicity, it was not used in time-domain analysis. In this work, the CHIEF approach is formulated appropriately for time-domain acoustic boundary element method by constraining the unknown surface pressure distribution at the current time, which was obtained by setting the pressure at the interior point to be zero considering the shortest retarded time between boundary nodes and interior point. Sound radiation of a pulsating sphere was used as a test example. By applying the CHIEF method, the low-order fictitious modes could be damped down satisfactorily, thus solving the non-uniqueness problem. However, it was observed that the instability due to high-order fictitious modes, which were beyond the effective frequency, was increased.

OPTIMAL HARVESTING FOR A POPULATION DYNAMICS PROBLEM WITH AGE-STRUCTURE AND DIFFUSION

  • Luo, Zhixue
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.35-50
    • /
    • 2007
  • In this work, optimal harvesting policy for the predator-prey system of three species with age-dependent and diffusion is discussed. Existence and uniqueness of non-negative solution to the system are investigated by using the fixed point theorem. The existence of optimal control strategy is discussed and optimality conditions are obtained. Our results extend some known criteria.

EXISTENCE AND NON-UNIQUENESS OF SOLUTION FOR A MIXED CONVECTION FLOW THROUGH A POROUS MEDIUM

  • Hammouch, Zakia;Guedda, Mohamed
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.631-642
    • /
    • 2013
  • In this paper we reconsider the problem of steady mixed convection boundary-layer flow over a vertical flat plate studied in [6],[7] and [13]. Under favorable assumptions, we prove existence of multiple similarity solutions, we study also their asymptotic behavior. Numerical solutions are carried out using a shooting integration scheme.

ON CLASSICAL SOLUTIONS AND THE CLASSICAL LIMIT OF THE VLASOV-DARWIN SYSTEM

  • Li, Xiuting;Sun, Jiamu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1599-1619
    • /
    • 2018
  • In this paper we study the initial value problem of the non-relativistic Vlasov-Darwin system with generalized variables (VDG). We first prove local existence and uniqueness of a nonnegative classical solution to VDG in three space variables, and establish the blow-up criterion. Then we show that it converges to the well-known Vlasov-Poisson system when the light velocity c tends to infinity in a pointwise sense.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.3
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.

QUALITATIVE ANALYSIS OF ABR-FRACTIONAL VOLTERRA-FREDHOLM SYSTEM

  • Shakir M. Atshan;Ahmed A. Hamoud
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.113-130
    • /
    • 2024
  • In this work, we explore the existence and uniqueness results for a class of boundary value issues for implicit Volterra-Fredholm nonlinear integro-differential equations (IDEs) with Atangana-Baleanu-Riemann fractional (ABR-fractional) that have non-instantaneous multi-point fractional boundary conditions. The findings are supported by Krasnoselskii's fixed point theorem, Gronwall-Bellman inequality, and the Banach contraction principle. Finally, a demonstrative example is provided to support our key findings.