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EXISTENCE OF LARGE SOLUTIONS FOR A QUASILINEAR
ELLIPTIC PROBLEM!

YAN SUN AND ZUODONG YANG*

ABSTRACT. We consider a class of elliptic problems of a logistic type
—div(|Vu™ V) = w(z)u’ — (a(2)) % f(u)

in a bounded domain of R¥ with boundary 89 of class C2, ujaq = 400,

w € L>®(),0 < g <1land a € C*(Q), RT is non-negative for some

a € (0,1), where RT = [0,00). Under suitable growth assumptions on

a,b and f, we show the exact blow-up rate and uniqueness of the large
solutions. Our proof is based on the method of sub-supersolution.
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1. Introduction

The purpose of this paper is to investigate the blow-up rate and uniqueness
of solutions to the problem

—div(|Vu|"?Vu) = w(z)u? — (a(z))F f(u) 2 € Q,ulsn = +00 (1.1)

where the boundary condition means u(z) — 400 as d(z) = dist(z, 0Q) — 0,
1 is a bounded domain in R (N > 1) with smooth boundary of class C?,m >
2, € (0,1),w € L*(Q) and a € C*Q, R*) is non-negative for some o €
(0,1) where R* = [0, 00). The solutions to the above problems are called large
solutions or explosive solutions.

This problem appears in the study of non-Newton fluids [1-3] and non-Newton-
ian filtration [4]. The quantity p is a characteristic of the medium. Media with
p > 2 are called dilatant fluids and those with p < 2 are called pseudo-plastics.
If p = 2, they are Newtonian fluids. Such problems arise in the study of the
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sub-sonic motion of a gas [16], the electric potential in some bodies [17] and
Riemanmian geometry [18].
Explosive solutions of the problem
Au(z) = flulz)),z € Q (1.2)
ulon = +00 (1.3)
where Q is a bounded domain in R (N > 1) have been extensively studied,
see [5-15]. A problem with f(u) = —e* and N = 2 was first considered by
Bieberbach [10] in 1916.Bieberbach showed that if Q2 is a bounded domain in R2
such that 99 is a C? sub-manifold of R?, then there exists a unique u € C?(f2)
such that Au = —e* in Q and |u(z) — (In(d(z)) 2| is bounded on (2. Here
d(xz) denotes the distance from a point zto dQ. Rademacher [14], using the
idea of Bieberbach, extended the above result to a smooth bounded domain in
R3. In this case the problem plays an important role, when N = 2, in the
theory of Riemanmian surfaces of constant negative curvature and in the theory
of automorphic functions, and when N = 3, according to [14], in the study of
the electric potential in a glowing hollow metal body. Lazer and McKenna (8]
extended the results for a bounded domain 2 in RV (N > 1) satisfying a uniform
external sphere condition and the non-linearity f = f(z,u) = p(z)(e*) where
p(z) is continuous and strictly negative on €. The existence, but not uniqueness,
of solutions of Egs. (1.2) and (1.3) with f monotone was studied by Keller [15].
Problem
Au = k(z)g(u), z € Q,ulpn = +00 (1.4)
arises from many branches of mathematics and applied mathematics, and has
been discussed by many authors and in many contexts, see e.g.[19-21]. Moreover,
by analyzing the corresponding ordinary differential equations, combing with the
maximum principle, Bandle and Marcus [20] obtain further conclusion through
a series of assumptionson the function g.
In the paper, we extend the results of [22] to problem (1.1), nonlinearity f
satisfying the Keller-Osserman condition, and the weight function a(z) vanishes
in some region of {2, as well as on some piece of the boundary Q. The basic
structural assumptions of this paper are as the following
(H1) The open set Q1 = {z € Q : a(z) > 0} is connected with boundary 9
of class C?, and the open Qg = Q\Q, satisfies Oy C Q.

(H2) f e CY (R4, Ry) satisfies f(0) =0, f(s) > 0foreach s >0, s — s~ 1 f(s)
is nondecreasing in (0, +00), and there exist p > 1 and Ky > 0 such that
SEIJPOO s7Pf(s) = Ko.

(H3) There exists a positive nondecreasing function b € C([0, ]), such that
a(z) = b(d(z)) in Qs, where

Qs = {z € Q;d(z) = dist(z, Q) < §}
‘with )
§< Edist(Qo, a0).
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Moreover, b(r) satisfies

1 r 1 4 )
F(?)/O b(s)ds, g(,,—)/ b(s)ds € C1([0, 6])

and
1 T
lim—/ b(s)ds = 0.
r=0b(r) Jo s)
We modify the method developed in [22], and give the following Theorem

Theorem 1. Under the assumptions (H1), (H2) and (H3), any positive solution
u to the problem (1.1) satisfies

. u(z)
i =M, 1.5
4@ (1 pryary= "
where
M- (am‘l(a + 1)(m —1)(4p)7 — (m — l)am‘l(Ao)%“l)%a
Ky ’
-t - [ i o b()ds)*
o= FA(?") = /0 b(s)ds, Ao = lim b(rg) T AG)ds =

Furthermore, if w(z) > 0, then (1.1) admits a unique positive solution.

The distribution of this paper is as follows. In Section 2 we collect some
preliminary results of a technical nature that are going to be used later. In
Section 3 we give the asymptotic behavior of the solutions of two auxiliary
problems that will be used in the next section. In Section 4 we prove the main
Theorem.

2. Some preliminary results

In this section we collect some useful preliminary results to be used in Section
3. Let

Alr) = /O “b(s)ds, A*(r) = /0 " A(s)ds (2.1)

and

[ &
B(r) = / b(s)ds, B*(r)= / B(s)ds. (2.2)
We give two propositions as follows

Proposition 1. For the small § > 0, consider the following singular value
problem

m

—div(|Vu"2Vu) = w(z)u? — a(x)= flu), in Qs
u=o00, on 00 (2.3)
u=0, on 90;\00
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Suppose that u,u satisfy
—div(|Vu| " ?Vu) < w(z)ul —a(z)
—div(|Vu|™*Va) > w(z)a? — a(z)® f(u), in Qs

lim u= lim ¥ = oo, lim 4 <0< lim u
d(x)—0 d(z)—0 d(z)—46 d(z)—46
and
u<u in Qs

Then the problem (2.3) possesses a solution u satisfying u < u < .

Proposition 2. Consider the following singular value problem

{ —div(|Vu"2Vu) = w(z)u? - a(z)? f(u), in Qs 2.4)
u =00, on s ’

Suppose that u, U satisfy
—div(|Vu|" V) < w(z)u! - a(x)? flu), in Qs
—div(|Va|" 2 Va) > w(z)a? - a(z)? f(T), in Qs

lim u= lim %= oo, lim = lim &=co,
d(z)—0"  d(z)—0 d(z)—6 d(x)—6

and u < T in Q5. Then the problem (2.4) possesses a solution u satisfying

gsuéﬂ
To prove Theorem 1, we also need the following two lemmas (see [22]).

Lemma 1. Let b(r) € C([0,6],[0,+c0)). If b(:) is a differentiable in [0, 6],

lim,_,o ’:((r)) =0, and limrao(/:((:)) )/ >0, then we have
Ak (r) . AX(r)
= > =
1T%b() 0Vp21, lLm o).~ °
and )
lim A°(r) =Ay>1

r—0 b(r)A*(r)
where A(r), A*(r) defined by (2.1).
Lemma 2. Let b(r) € C([0, 4], [0, +00)). If b(T) is a differentiable in [0, 6] and
limqg(%l)' <0, then we have

. BH(r) B*(r)
1 —0Vu>1 -0
s b(r) ezl lim=es
and )
lim 2 7) By > 1

where B(r), B*(r) defined by (2.2).
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3. Two auxiliary problem

Let

A=infw and A =supw
Q Q
we prove the following two theorems which will be crucial in proving Theorem
1.

Theorem 2. Suppose (H2) and (H3) hold. Then, for each € > 0, the problem

—div(|Vu[™"2Vu) = Au? — b(d(z)) % f(u), in Qs
u=00, on I (3.1)
u=0, on 00s\00

possesses a positive solution ®. such that

—€ im in __(I%@_ im s __ﬁ)__ .
1 <l )io M (A*(d(z)))~ Slmd(z‘)lg() M A (d@))) = <1+e,
where
— am—l(a-f_l)(m—l)(Ao)% _(m—l)am"l(AO)%_l 2,
M=t Ko )=,
1
Tp-1

Proof. First we claim that, for each € > 0 sufficiently small, there exists a con-
stant A, > 0 such that for 4 > A,

Dc(z) = A+ By (A"(d(2))"
is a positive supersolution of (3.1) if
a™ a4 1)(m = 1)(40)% = (m—1)a™ (AT »
Ko
o= 1-)1—1 (3.2)
Indeed, limg(z)—0 ® (z) = oo since & > 0. Thus, ®.(z) is a supersolution of
(3.1") if and only if
~(B+a)" " (—a = 1)(m — 1)(A™(d(x))) "> (A(d(2))" [ Vd(z)|™
~(B4+a)™ ! (m — 1)(A*(d(x))) "D 1)(A(d(ﬂﬁ) )" 2b(d())| V()™

)
~(Byo)™ (A (d(2))) D (A(d()))" Al d(2))
A+ B (A (d(@)) — b(d(a) LL2eZ)

4 __
2

By = (1+€)

P,
(A+ By (A (d(z))) o) F+% !
Thus, multiplying this inequality by
(A(d(z)))2~™(A* (d(z)))emtm—op
b(d(z))
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and taking into account |Vd(z)| = 1 and o+ 1 — ap = 0, we find that ®.(z) is
a supersolution of (3.1) if and only if

m—1 A2(d($)) m—1 m—1
—(B+a) (—a—1)(m— I)W - (B+a) (m-1)—(Bra)
AGE) ) e
) A @)
* T * T —agt+am—op+2
< (A @) + By (GG e
f(®e(z))  bld())A*(d(z))

+

i C gy AW @)+ BEET) 6

At the value d(z) = 0, we see by —ag+ am —ap+2 > 1 and Lemma 1 that the
inequality (3.4) becomes
(B+a)™ Mo+ 1)(m — 1) Ao — (m — 1)(Bya)™ "

1 m o__ m mp __
S FNB)EETK

which is satisfied if and only if
o107 (o 1)m = 1)(d) = (m — o™
Ky '

By our choice of (3.2) and the continuity, we see that the inequality (3.3) is
satisfied in €, for some ¢ = o(c) € (0,4). Finally, by choosing a sufficiently
large, it is clear that the inequality (3.3) is satisfied in 5, since p > 1> g and
b(r) is bounded away from zero in Q582,.

Next we construct a subsolution of (3.1) with the same blow-up rate. In fact,
for each sufficiently small € > 0, there exists C < 0 for which the function

2. (z) = max{0,C + B_(A"(d(x)))""},
provides us with a non-negative subsolution of (3.1) if
B_=(1-¢M
_a- e)(am_l(a +1)(m— 1)(A0)Ii— (m — 1)a™ 1 (Ag) %1 2o (3.5)
Indeed, it is easy to see that @ (z) is a subsolution if in the region where
C+ B_(A*(d(x)))™@ >0
the following inequality is satisfied
~(B-a)" " H(—a = 1)(m — 1)(A*(d(x))) "™+~ (A(d(2)))" | V()™
— (B-a)™ "} (m — 1)(A"(d(2))) ">~V D(A(d(x)) ™ 20(d(2)| V()™
— (B_a)™ N (A (d(2)) "D (A(d(2) " Am(d(2))
2 —MA+ B_(A™(d(z)))"*)*

(B+) P71 > (4)
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D (x
R - e I
e’ (A+B_(A*(d(z)))~*)= "=~
At d(x) = 0, we see by the same proceeding above that the inequality (3.6)
is equivalent to
(Bra)™ Ha+1)(m —1)Ag — (m — 1)(Bra)™"!

1 m m m
2 ()T B FTE K,

(3.6)

+5E-1

By our choice of {3.5) and the continuity, there exists o = o(¢) > 0 for which
(3.6) is satisfied in Q,. It is easy to see that

lim B (A"(r)™%) + C = o0, lim B_(A"(r)™") + C <0

if C < 0 with |C| being large enough, and (B_(A*(r)"®) 4+ C) < 0in [0,d],
where represents the derivative with respect to r. Thus, for each C < 0 with
|C| large enough, there exists a constant Z(C') € [0, d) such that
B_(A*(d(x)))"*+ C <0 if d(z) € [2(C), 4],
while
B_{(A*(d(z)))™*)+ C >0 if d(z) € [0, Z(C)).
Then by choosing C such that Z(C) = o, it follows that ®,(x) provides us a
subsolution of (3.1).

It follows from Proposition 1 that there exists a solution of (3.1}, denoted by
., satisfying

— €= 1 —%- m in __._L
LT R M@ e = B MUE @@y
S (l’) l u 65(‘%) — €
Sl swp @)= = P WA= e

The proof is completed.
Theorem 3. Suppose (H2) and (H3) hold. Then, for each € >0, the problem

—div(|Vu|™2Vu) = Au? — b(d(x)) % f(u), in Qs (3.7)
u=o00, on 0Qs |
possesses a positive solution V. satisfying
. \Ile(z) C(x)
I1-e<lim inf —————=— <lim sup ——r—F 7 <1l+g¢
d(z)—0 M[A*(d(z))]~~ d(z)—0 MIA*(d(x))]~*
, ¥ (z) Y (z)
l—-e<lim inf —————— <lim sup ————— < 1+¢,
d(z)—s N[A*(d(z))]~« d(z)—s N[A*(d(z))] =
where
™o+ 1)(m = 1)(49)% — (m — am (431 2,
M = ( KO )'ﬂl s
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am—l(a + 1)(’!7’7, - 1)(30)% — (m _ 1)am—1(BO)L;._1 ,

N: ;a
( = A,

Proof. First we claim that, for each € > 0 sufficiently small, there exists a con-
stant Ac > 0 such that for A > A,

T (z) = A+ B, (A= 4 o, (@)
is a positive supersolution of (3.7) if
a™ Ha+1)(m—1)(4)% — (m —1)a™ 1 (Ag) 5}

B+ =(1 +€)( Ko )%a
m—1¢. m — z2 _ m — am1 N -1 2
Cy=(1 +6)(a (a+ 1)( 1)(BO)KO ( 1) (B ) yme
and
B (A™(d(2)) ™" Ald(z)) — C+(B*(d(2)))~* 7' B(d(z)) > 0. (3.8)
Indeed,

lim ¥ (z)= lim V.(z)=
d(xl)r)ll»o (z) d(}cl)r)li»a o(z) = 00

since a > 0. Thus, ¥, is a supersolution of (3.7)/ if and only if
—a™ " A (d(@))(B1 (A (d(2))) " A(d(2)) — C1(B*(d(2))) ™" B(d(x))™"
— a™ 7 (m — 1)(B1(A*(d(2)))"* " A(d(2)) - C+(B*(d(2))) ™"
B(d(z))™*(—a — 1)(B+(A"(d(x))) " *2A%(d())
+ C4(B*(d(2)) =%~ B*(d(x))|Vd(x))|™
~ ™ m = 1)(By.(A*(d(z))) "
A(d(z)) — C1(B*(d(2)))"* "' B(d(2)))™*(B4+(A"(d(z))) ">
+ C1(B*(d(2))) "~ b(d(=)))| V()™
< —-A(A+ B (A™(d(2)))™* + C1(B*(d(2)))"*)*
(o) g L (4 B (47 (da))
+CH(B"(d(x))) ") F+H 1, (3.9)
Multiplying on both sides of the above inequality by
(A(d(x))>~™ (A" (d(x)))~(e-Dim=D
b(d(=))

and taking into account |Vd| =1 and o + 1 — ap = 0, we find that ¥ (z) is a
supersolution of (3.7) if and only if

_am——IAm(d(x)) ( ( ))(B+ —C+(A*( (x)))a+1 (d

( )) )m—l
b(d(x)) B*(d(z))”  Ald(z))
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— ™ = 1)(-a = (B - Oy (g ) 2t

(z)) o1 B2(d(z
(x))"  B*(d(z))b
2

(B

A%(d(z)) A*(d
T A (d(z))b(d()) (d

= o m = 1)(By — Cy(

+

At the value d(z) = 0, by Lemma 1, the inequality (3.10) becomes

o™ Hm = 1)(a+1)B7 ' 4g — o™ Y (m — 1)B!
< Ko(i)%hlezz‘%
Ao

since B*(r) and B(r) being bounded above near r = 0.
Multiplying on both sides of the inequality (3.9) by

(B(d(z)))2~™(B*(d(z)))~(-e—Dm=1)
b(d(z))

and taking into account |Vd| =1 and o +1 — ap = 0, we find that ¥ (z) is a
supersolution of (3.7) if and only if

- Bl(x), . B'(d(z) i AWAE) . s
— Al Ty B F ey Baw) ¢

) B
B ayhaa) A

_ O[m—l(,’n _ 1)(B+(B*(d(.'17)))) )a+1 A(d(l’)) _ C+)m—2

B*(d(x))

B atm)

)Ot+1 + C+)
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(B* (d(x)))am—i-m—l——a—aq
(B(d(z)))™*
B(d(z)) f(@e(z) b(d(@))B*(d(2)\ =1, 4 o
+ m o m 2 A B d x
@) T @@ ET Baw) ) 0 D)
B (d(x)) myme_
CB+EE-1 3.11
At the value d(z) = 4, choose suitable o, m, By s.t.
a™ M m - 1)(-1)""*(a+1)By > 1
by Lemma 2, (3.11) becomes
o™= m = 1)(a + 1)(=1)" ()™ By — o™ (m = 1)(=1)"H(C)"
m mp 1 m
< Ko(Cy)z Tz ()3t
(O EF N ()8
since A*(r) and A(r) being bounded above near r = 4.

Therefore, by the choice of (3.8) and the continuity,we see that the inequality
(3.9) is satisfied if d(z) € [0,0) U (8 — o,0] for some o = o(e) > 0. Finally, by
choosing A as sufficiently large, it is clear that the inequality is satisfied in (s,
since p > ¢ and b(r) is bounded away from zero.

Next we construct a subsolution with the same blow-up rate. In fact, for each
sufficiently small € > 0, there exists C' < 0 for which the function

Y () = max{0,C + B_(A"(d(z)))"* + C_(B"(d(z)))"*}
provides us with a non-negative subsolution of (3.7) if
a™ Ha+1)(m —1)(A) % — (m —1)a™ 1(4g) 27! 2

+ B (

B_ =(1-¢) 7 )
0
C (- €)(ozm_l(oz + 1)(m — 1)(Bo)i —(m—1)a™ }(By) %! e
0
and

B_(A*(d(x)))"* " A(d(z)) — C—(B*(d(x)))~*""B(d(z)) > 0 (3.12)
Indeed, it is easy to see that ¥ (z) is a subsolution if in the region where
C+ B_(A"(d(2)))™* + C_(B"(d(x)))"* 20,
the following inequality is satisfied
o A (d())(B- (A*(d(x)) " A(d(z)) — O (B* (d(2))) ">
B(d(z))™ ™" — ™ (m ~ 1)(B-((4*(d(x))) """ A(d(x))
- C_(B*(d(x)))"* 7' B(d(2))"*(~a — 1)(B-(A*(d(2)))~*"*A*(d(x))
+C_(B*(d(2)))~*~2B(d(2))|Vd(x))|™ — ™ (m — 1)(B- (A*(d( ) I
A(d(2)) — C-(B*(d(x))~* " B(d(2)))"~*(B-(A*(d(x))) ™
+C_(B"(d(2))) ™~ "b(d(x))|Vd(2))|™ — C-(B*(d(2)))"*~(B(d(x))"
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2 —AMC + B_(A"(d(z))) ™" + C_(B"(d(2)))™*) + b(d(=))

_ @)
(@) F T

Similarly, at the value d(z) = 0, the inequality (3.13) is equivalent to

(C'+ B (A" (d(2)) ™ + C_(B*(d(x)))"*) ¥+¥ 1 (3.13)

m

1. m mp_
™ Hm - 1)(a+1)B™ A4y — ™ Y(m — 1)B™ ! > KO(Z—)T‘lB_Z z,
0

o

At the value d(x) = 4, the inequality (3.13) is equivalent to
o Hm = )(a+ )(-1)™2(C_)™ By — a™ Hm — 1)(=1)""2(C_)" !
m mp 1 m
< T+ —1r = \F-1
= KO(C—) (BO) ‘

Thus, there exists ¢ = a(e) > 0, for which (3.13) is satisfied if d(z) € [0,0) U
(0 — 0, 6]. We see by the proof of Theorem 2 that for each C' < 0 with |C| large
enough, there exists a constant Z(C') € (0, ) such that

C + B_(A*(d(2))~* + C_(B*(d(z)))™* <0 if d(z) € [2(C),s - Z(O)],
while
C+B_(A"d(z)) "+ C_(B*(d(x))) >0
if
d(z) € [0,2(C)) U (6 — Z(C),d].

Then by choosing C' < 0 such that Z(C) = o, it follows that ¥ (z) provides us
a subsolution of (3.7).

It follows from Proposition 2 that there exists a solution of (3.7), denote by
U (x), satisfying

—e= lim __ Lle) im in __Yelo)
b= MA@y < G A T
m su _\Ile(x) im s —_e(x) = €
N Vo5 i I ViyTT o) i
—e= lim _ Llo) im in __Ylo)
L R N e = s MBaa
(CC) . ae(x) _ ¢
St o B S, N e

The proof is completed.

4. Proof of Theorem 1

Let u be any positive solution of (1.2). Since 2 is of class C?, there exists
0<po < % such that

Qs ={r€Qu<d(z) <d} Qs foreach p € (0, po).
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Since b(r) is nondecreasing on (0, §), then b(d(z) — u) < b(d(x)) in Q%ﬂw and

Us =1U
g Hip |Q§+u,u

provide us a positive subsolution of

—div(|Vu|™2Vu) = Au? — b(d(z) — )% f(u), in Q%ﬂ«u’ (4.1)
U =00, On 8Qg+‘w :
where
A = supw.
Q

Thus, any positive solution (,, of (4.1) is a supersolution of (1.2) that u verifies
in Q LI So, thanks to the uniqueness, we see from the strong maximum

principle that
' sy, <G in Q%Jru,u (4.2).
We see by Theorem 3 that for each € > 0 sufficiently small, any positive solution
¥, of
{ —div(|Vu|™"?Vu) = Aud — b(d(x)) % f(u), in Qj,
u=00, on O s
satisfies

im su _ Ydm) €
i o o M ()= = 3

here M, a defined in (1.4).
Fixed € > 0 and p € (0, o), considering the function ¢, defined by

C[l.(x) = \I,E(x - M@)?x € Q%—}-/_‘Ly#

where 7 (z) stands for the inward unit normal at zo = Edist(x, Q) (z) N OfL.
We have that for each sufficiently small p > 0, ¢, provides us a large super-
solution of (1.2) in Qs ,.,,» and hence, (4.2)implies that

u(z) < ¥(x — puny) foreach z € Q%ﬂw and u € (0, uo)-
Letting 4 — 0, we have

u < V¥, in Q%,
we see by (4.3) that
: u(z)
lim sup ————~2— <1+e 4.4
P WA (@) (44)

To complete the proof of Theorem 1, we have to show that

o u(x)
hm il A @)= =

For each sufficiently small u € (0, ), set
C, = {z ¢ Q; dist(z, Q) < u},

1—e (4.5)
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and
D(;’ n = QsuC L
Let d(x) = dist(z, Q) for z € Q, and d(x) = —dist(z, Q) for z &€ .
By Theorem 2, for each sufficiently small € > 0, (3.1) possesses a positive
solution ®, such that

@ (z)
lim inf —— " >1—¢ 4.6
d(z)—0 M[A*(d(z))]—> ~ (46)
where M, o defined in (1.4). For each sufficiently small > 0, set
£.(z) = ®(z + png),x € Ds_pypy.
Then &, provides us with a large positive solution of
—div(|Vu|""?Vu) = Mu? — b(d(z) + )% f(u), in Ds—,,
u=o00, on 0C,\0Q (4.7)
uw=0, on 09Qs5_,\00
where
A =infw.
Q
Thanks to the uniqueness, £,|Q5_,, is unique and provides us a positive subso-
lution of (1.2) in Qs..,,, we have that
Pe(z+uns) =Eu(x) Sus_pfz) = ulo,_, for each x € Q5.
Letting u — 0, we obtain
P, < wu in g,
and hence, we see by (4.6) that
N u(z)
| f — > 1-—¢
" im0 MIA*(d(z)) = = ¢
combining with (4.4) and letting € — 0, we have
lim X ?(x) =
42)=0 M(f{ Ar)dr)=e
We now show the uniqueness. Assume that u; and us are two positive solution

of (1.2). Then (1.3) holds for u; and us. For any € > 0 there exists 0 = o(e€) €
(0, 9) such that

(I-eu <ug <(l+¢€)u in,.
Now, consider the problem
—div(|Vu|™2Vu) = w(z)u? — a(z)f(u), in Q7 = N\Q,, (4.8)
u=1ug, on O00° '

By the uniqueness theorem, (4.8) possesses a uniqueness positive solution since
w(z) > 0, necessarily, us. It is easy to see that the pair (1 — €)ug, (1 + €)u;
provides us an ordered sub-solution pair of (4.8). Therefore,

(I —-eu <up <(1+4€)u; in7,
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and, consequently,

(1-€u; <up <(1+€us in Q.
As this is true for any € > 0, we obtain that u; = u,. This concludes the

proof of Theorem 1.
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