• 제목/요약/키워드: Non-thermal atmospheric pressure plasma

Search Result 41, Processing Time 0.024 seconds

Adhesive Bonding Properties between NBR and Polyamide Woven Fabric with Atmospheric Pressure Plasma Treatment (대기압 플라즈마 처리한 폴리아미드 직물과 NBR의 접착특성)

  • Ryu, Sang-Ryeoul;Lee, Dong-Joo
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2010
  • The effect of the atmospheric pressure plasma(APP) treatments is experimentally investigated to ascertain the optimum condition to yield the best adhesive properties between a polyamide woven fabric and acrylonitrile butadiene rubber(NBR). For the atmospheric pressure flame plasma(APFP) treatment, the optimum number of treatment at given conditions is 2 times. The thermal deformation of the fabric is more serious with increasing the number of APFP treatment. The adhesive strength of the case with APFP treated fabric is increased about 35% when compare to the case with non-APFP treated one for the interface(bonding agent one or two coatings). When the surface is coated twice with the bonding agent, the adhesive energy with APFP treated fabric is increased about 4 times. It was found that the surface modification of polyamide woven fabric by APFP treatment is a fast, economic and applicable method to improve the adhesive properties between woven fabric and rubber when compared to other APP treatments.

Anti-inflammatory effect of non-thermal atmospheric pressure plasma for periodontitis treatment: in vitro pilot study (치주염 치료를 위한 저온상압 플라즈마의 항염효과: 예비 실험)

  • Park, You li;Kim, Hyun-Joo;Lee, Ju-Youn;Jeong, Sung-Hee;Kwon, Eun-Young;Joo, Ji-Young
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.88-94
    • /
    • 2021
  • Purpose: The purpose of this study was to evaluate the anti-inflammatory effects of non-thermal atmospheric pressure plasma (NTP) on human gingival fibroblasts (HGFs) for clinical application of periodontal treatment. Materials and Methods: HGFs were treated with Porphyromonas gingivalis (Pg) lipopolysaccharide (LPS). Customized NTP device was developed for periodontal in vitro study. Cell viability was evaluated with cell counting kit-8. The levels of inflammatory cytokines, including interleukin (IL)-8 and 6, were determined by enzyme-linked immunosorbent assay. Results: When NTP was applied, the cell viability did not change significantly, and there was no difference for 6 h and 24h. When Pg LPS was treated to HGFs, the secretion of IL-8 and IL-6 was increased compared to the control group. But when the NTP was applied, the secretion of them was significantly decreased. Conclusion: NTP did not affect cell viability of HGFs. And it inhibited the LPS-induced production of IL-8 and IL-6.

Prediction of Anode Temperatures of Free Burning Arcs Using a Simplified Unified Model

  • Jeon, Hong-Pil;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.565-565
    • /
    • 2013
  • Free burning arcs where the work piece acts as an anode are frequently used for a number of applications. Our investigation is exclusively concerned with a simplified unified model of arcs and anode under steady state conditions at atmospheric pressure. The model is used to make predictions of arc and anode temperatures and arc voltage for a 200 A arc in argon. The computed temperatures along the axis between the cathode tip and the anode surface compare well the measured data. This knowledge of free burning arcfeatures can play a role in developing the atmospheric plasma systems, however, further investigation should include the modelling of Cu evaporation from anode and non-LTE situation near electrodes for more realistic calculations.

  • PDF

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Kwak, Hyong Sin;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.159-159
    • /
    • 2015
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite (ONOO-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria.

  • PDF

Effect of atmospheric plasma versus conventional surface treatments on the adhesion capability between self-adhesive resin cement and titanium surface

  • Seker, Emre;Kilicarslan, Mehmet Ali;Deniz, Sule Tugba;Mumcu, Emre;Ozkan, Pelin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate the effects of atmospheric plasma (APL) versus conventional surface treatments on the adhesion of self-adhesive resin cement to Ti-6Al-4V alloy. MATERIALS AND METHODS. Sixty plates of machined titanium (Ti) discs were divided into five groups (n=12): 1) Untreated (CNT); 2) Sandblasted (SAB); 3) Tribochemically treated (ROC); 4) Tungsten CarbideBur (TCB); 5) APL treated (APL). SEM analysis and surface roughness (Ra) measurements were performed. Self-adhesive resin cement was bonded to the Ti surfaces and shear bond strength (SBS) tests, Ra and failure mode examinations were carried out. Data were analyzed by one-way analysis of variance and chi-squared test. RESULTS. The lowest SBS value was obtained with CNT and was significantly different from all other groups except for APL. The ROC showed the highest SBS and Ra values of all the groups. CONCLUSION. It was concluded that the effect of APL on SBS and Ra was not sufficient and it may not be a potential for promoting adhesion to titanium.

Action of atmospheric pressure non-thermal plasma on the biomolecules and bio-organism

  • Attri, Pankaj;Park, Ji Hoon;Kumar, Naresh;Ali, Anser;Kim, In Tae;Lee, Weontae;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.66.1-66.1
    • /
    • 2015
  • Plasma medicine is an upcoming research area that has attracted the scientists to explore more deeply the utility of plasma. So, apart from the treating biomaterials and tissues with plasma, we have studied the effect of plasma with different feeding gases on modification of biomolecules. Additionally, we have checked the action of nanosecond pulsed plasma on the biomolecules. We have checked the plasma action on proteins ((Hemoglobin (Hb) Myoglobin (Mb) and lysoenzyme), calf thymus DNA and amino acids. The structural changes or structural modification of proteins and DNA have been studied using circular dichroism (CD), dynamic light scattering (DLS), gel electrophoresis, protein oxidation test, UV-vis spectroscopy and 1D NMR, while Liquid Chromatograph/Capillary Electrophoresis-Mass Spectrometer(LC/CE-MS) based qualitative bio-analysis have been used to study the modification of amino acids. We have also shown the effect of NaCl and ionic liquid on the formation of OH radicals using electron spin resonance and fluorescence techinques.

  • PDF

Effect of Atmospheric Pressure Plasma Jet on Inactivation of Listeria monocytogenes, Quality, and Genotoxicity of Cooked Egg White and Yolk

  • Lee, Hyun-Jung;Song, Hyun-Pa;Jung, Hee-Soo;Choe, Won-Ho;Ham, Jun-Sang;Lee, Jun-Heon;Jo, Cheo-Run
    • Food Science of Animal Resources
    • /
    • v.32 no.5
    • /
    • pp.561-570
    • /
    • 2012
  • The objective of this study was to evaluate the effects of an atmospheric pressure plasma (APP) jet on L. monocytogenes inactivation, quality characteristics, and genotoxicological safety of cooked egg white and yolk. APP treatment using He gas resulted in a 5 decimal reduction in the number of L. monocytogenes in cooked egg white, whereas that using $He+O_2$, $N_2$, and $N_2+O_2$ decreased the number further, and to undetectable levels. All treatments of cooked egg yolk resulted in undetectable levels of inoculated L. monocytogenes. There were no viable cells of total aerobic bacteria after APP treatment on day 0 while the control showed approximately 3-4 Log CFU/g. On day 7, the numbers of total aerobic bacteria had increased by approximately 3 log cycles in cooked egg white, but there were no viable cells in cooked egg yolk after 2 min of APP jet. APP treatment decreased the $L^*$-values of cooked egg white and yolk significantly on day 0. No significant sensory differences were found among the cooked egg white samples, whereas significant reductions in flavor, taste, and overall acceptability were found in cooked egg yolks treated with APP jets. SOS chromotest did not reveal the presence of genotoxic products following APP treatments of cooked egg white and yolk. Therefore, it can be concluded that APP jets can be used as a non-thermal means to enhance the safety and extend the shelf-life of cooked egg white and yolk.

Low frequency plasma disinfectant effect in seawater and three major fish bacterial disease pathogens (저온 대기압 플라즈마를 이용한 해수 및 어류 병원성 세균 3종에 대한 살균소독효과)

  • Kim, Soo-Jin;Park, Shin-hoo;Jee, Bo-young;Kim, Yong-jae;Gwon, Mun-Gyoeng
    • Journal of fish pathology
    • /
    • v.33 no.1
    • /
    • pp.91-95
    • /
    • 2020
  • Fish bacterial diseases have spread and caused serious problem for cultured marine fish in Korea. The important bacterial disease affecting mariculture such as olive flounder (Paralichthys olivaceus) are caused by Edwardsiella tarda, Vibrio scophthalmi and Streptococcus parauberis. For the bacterial disease protection in aquaculture industry, the water treatment is needed in aquaculture system. During the last decades atmospheric pressure non-thermal plasma in contact with liquids have received a lot of attention of environmental and medical application. In this study, we determined the disinfectant effect in seawater and three major fish bacterial disease pathogens by using low frequency plasma treatment. Three fish bacteria (E. tarda, V. schophthalmi, S. parauberis) were not detected within 16 min, 150 min and 270 min of 20 L, 500 L and 1 ton seawater post low frequency plasma treatment, respectively. Three major fish bacterial disease pathogens were not detected within 2 min after the low frequency plasma treatment, suggesting that the low frequency plasma possess disinfectant effectiveness.

Enhancement of Nitric Oxide with nonthermal plasma jet and its effect on Escherichia coli inactivation and various type of cancer cell

  • Shaw, Priyanka;Kumar, Naresh;Attri, Pankaj;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.230.2-230.2
    • /
    • 2016
  • A new approach for antimicrobial is based on the overproduction of reactive nitrogen species (RNS), especially; nitric oxide (NO) and peroxinitrite ($ONOO^-$-) are important factors to deactivate the bacteria. Recently, non-thermal atmospheric pressure plasma jet (APPJ) has been frequently used in the field of microbial sterilization through the generation of different kinds of RNS/ROS species. However, in previous study we showed APPJ has combine effects ROS/RNS on bacterial sterilization. It is not still clear whether this bacterial killing effect has been done through ROS or RNS. We need to further investigate separate effect of ROS and RNS on bacterial sterilization. Hence, in this work, we have enhanced NO production, especially; by applying a 1% of HNO3 vapour to the N2 based APPJ. In comparison with nitrogen plasma with inclusion of water vapour plasma, it has been shown that nitrogen plasma with inclusion of 1% of HNO3 vapour has higher efficiency in killing the E. coli and different type of cancer cell through the high production of NO. We also investigate the enhancement of NO species both in atmosphere by emission spectrum and inside the solution by ultraviolet absorption spectroscopy. Moreover, qPCR analysis of oxidative stress mRNA shows higher gene expression. It is noted that 1% of HNO3 vapour plasma generates high amount of NO for killing bacteria and cancer cell killing.

  • PDF

Operational Properties and Microbial Inactivation Performance of Dielectric Barrier Discharge Plasma Treatment System (유전체장벽방전 플라즈마 장치의 조작특성과 살균력)

  • Mok, Chulkyoon;Lee, Taehoon
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.398-403
    • /
    • 2011
  • A dielectric barrier discharge plasma (DBDP) treatment system was fabricated and the optimum operating conditions for the plasma generation were determined in order to explore the potential of cold plasma as a non-thermal proessing technology. The microbial inactivation performance of the system was also evaluated against Staphyloocus aureus. The system consisted of power supply, transformer, electrode assembly and sample treatment plate. The input power was 220 V single phase AC and amplified to 10.0-50.0 kV on a transformer. A pulsed sine wave of frequency 10.0-50.0 kHz was introduced to the electrode embedded in ceramic as a dielectric barrier material in order to generate plasma at atmospheric pressure. Higher currents and consequently greater power were required for the plasma generation as the frequencies increased. A homogeneous and stable plasma was generated at currents of 1.0-2.0, and frequencies of 32.0-35.3 kHz. The optimum electrode-gaps for the plasma generation were 1.85 mm without loaded samples. More power was consumed as the electrode-gaps increased. The practically optimum electrode- gap was, however, 2.65 mm when samples were treated on slide-glasses for microbial inactivation. The maximum temperature increase after 10 min treatment was less than 20$^{\circ}C$, indicating no microbial inactivation effect by heat and thereby insuring a non-thermal method. The DBDP inactivation effect against Staphyloocus aureus increased linearly with treatment time up to 5 min, but plateaued afterward. More than 5 log reduction was achieved by 10 min treatment at 1.25 A.