• Title/Summary/Keyword: Non-storm period

Search Result 37, Processing Time 0.02 seconds

Runoff Characteristics of Non-Point Source Pollutants in Storm Event -Case Study on the Upstream and Downstream of Kokseong River, Korea- (강우시 비점오염물질의 유출특성에 관한 연구 -곡성천 상.하류를 대상으로-)

  • Yang Hea-Kun
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.418-434
    • /
    • 2006
  • The study was investigated to runoff characteristics of non-point pollutants according to rainfall in Kokseong river watershed. The result of which is as follows : First of all, major reason which affect the formation of water quality of Kokseong River is judged to be caused by non-point pollution source which flows out from farmland and residential area. Flow of rainfall effluent in the downstream in which direct flow components of urban district and combined sewer overflows of farmland was intervened faster than that in the upstream reacted more promptly. Generation of pollutants by non-point source shows increasing trend in general in accordance with the increase in the intensity of rainfall but it was affected by SS, BOD, COD and T-P in the upstream part whereas BOD, COD and T-N were significantly affected by beginning period of rainfall in the downstream. EMC in the downstream increased approximately 3-315 times as compared to upstream, particularly the discharge of SS5 and T-P were extremely increased. While surface flow out of rainfall effluent in the upstream was only 4.7%, the surface flow in the downstream took up as much as 29%, which was major reason for the increase of EMC. From the above contents, we can see that the change in water quality according to the increase and decrease of effluent at the time of rainfall showed very complex pattern depending on the type of land use, and it is judged that the most important thing for the administration of non-point pollution source is to come up with the solution for the reduction of effluent at the beginning.

Quantitative Flood Forecasting Using Remotely-Sensed Data and Neural Networks

  • Kim, Gwangseob
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.43-50
    • /
    • 2002
  • Accurate quantitative forecasting of rainfall for basins with a short response time is essential to predict streamflow and flash floods. Previously, neural networks were used to develop a Quantitative Precipitation Forecasting (QPF) model that highly improved forecasting skill at specific locations in Pennsylvania, using both Numerical Weather Prediction (NWP) output and rainfall and radiosonde data. The objective of this study was to improve an existing artificial neural network model and incorporate the evolving structure and frequency of intense weather systems in the mid-Atlantic region of the United States for improved flood forecasting. Besides using radiosonde and rainfall data, the model also used the satellite-derived characteristics of storm systems such as tropical cyclones, mesoscale convective complex systems and convective cloud clusters as input. The convective classification and tracking system (CCATS) was used to identify and quantify storm properties such as life time, area, eccentricity, and track. As in standard expert prediction systems, the fundamental structure of the neural network model was learned from the hydroclimatology of the relationships between weather system, rainfall production and streamflow response in the study area. The new Quantitative Flood Forecasting (QFF) model was applied to predict streamflow peaks with lead-times of 18 and 24 hours over a five year period in 4 watersheds on the leeward side of the Appalachian mountains in the mid-Atlantic region. Threat scores consistently above .6 and close to 0.8 ∼ 0.9 were obtained fur 18 hour lead-time forecasts, and skill scores of at least 4% and up to 6% were attained for the 24 hour lead-time forecasts. This work demonstrates that multisensor data cast into an expert information system such as neural networks, if built upon scientific understanding of regional hydrometeorology, can lead to significant gains in the forecast skill of extreme rainfall and associated floods. In particular, this study validates our hypothesis that accurate and extended flood forecast lead-times can be attained by taking into consideration the synoptic evolution of atmospheric conditions extracted from the analysis of large-area remotely sensed imagery While physically-based numerical weather prediction and river routing models cannot accurately depict complex natural non-linear processes, and thus have difficulty in simulating extreme events such as heavy rainfall and floods, data-driven approaches should be viewed as a strong alternative in operational hydrology. This is especially more pertinent at a time when the diversity of sensors in satellites and ground-based operational weather monitoring systems provide large volumes of data on a real-time basis.

  • PDF

Evolution and scaling of a simulated downburst-producing thunderstorm outflow

  • Oreskovic, Christopher;Savory, Eric;Porto, Juliette;Orf, Leigh G.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.147-161
    • /
    • 2018
  • For wind engineering applications downbursts are, presently, almost exclusively modeled, both experimentally and numerically, as transient impinging momentum jets (IJ), even though that model contains none of the physics of real events. As a result, there is no connection between the IJ-simulated downburst wind fields and the conditions of formation of the event. The cooling source (CS) model offers a significant improvement since it incorporates the negative buoyancy forcing and baroclinic vorticity generation that occurs in nature. The present work aims at using large-scale numerical simulation of downburst-producing thunderstorms to develop a simpler model that replicates some of the key physics whilst maintaining the relative simplicity of the IJ model. Using an example of such a simulated event it is found that the non-linear scaling of the velocity field, based on the peak potential temperature (and, hence, density) perturbation forcing immediately beneath the storm cloud, produces results for the radial location of the peak radial outflow wind speeds near the ground, the magnitude of that peak and the time at which the peak occurs that match well (typically within 5%) of those produced from a simple axi-symmetric constant-density dense source simulation. The evolution of the downdraft column within the simulated thunderstorm is significantly more complex than in any axi-symmetric model, with a sequence of downdraft winds that strengthen then weaken within a much longer period (>17 minutes) of consistently downwards winds over almost all heights up to at least 2,500 m.

Characteristics of Sewage Flow in Sewer Pipes Deposited with Cohesive and Non-cohesive Solids (점착성 및 비점착성 고형물이 퇴적된 관로 내 하수흐름의 특성 조사)

  • Lee, Taehoon;Kang, Byongjun;Park, Kyoohong
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.7
    • /
    • pp.153-159
    • /
    • 2020
  • In order to find out the condition of flow in sewer pipes, this study investigated the characteristics of tractive force of sewage flow estimated using actual measured values of water level, velocity, and flowrate in sewers located at uppermost portion in a treatment area during dry weather periods. When the scene of sewage flow was taken by CCTV after cohesive and non-cohesive solids (tofu and sand) were put on the sewer invert, it was found that the solids could be flushed without significant interruption. In sewer with slope of 0.00319, the frequency exceeding the minimum tractive force of sewage during a weekday was zero, while it was 10 per day with slope of 0.00603. During the week of the field observation, the event to exceed the minimum tractive force occurred once, suggesting that sewer odor would potentially increase. Maximum tractive force in sewer with steep slope was 2.9-3.1 N/㎡, but with gentle slope it decreased to 1.6-1.7N/㎡. It was also observed that the interval of time maintained below the criterion of minimum tractive force increased, during weekends compared to weekdays and for the sewage including non-cohesive particles which could enter combined sewers during a storm period. This study found that the sewer sediments formed by direct feces input into sewers, through sewer pipes which were designed meeting the standard sewer design criteria, could be flushed without staying as deposited solids state for a long time.

Runoff Characteristics of Non-point Pollutant Sources in an Agricultural Area Watershed (농촌지역 비점오염물질의 유출 특성)

  • Ryu, Kwang-Hyun;Lee, Geon-Jik;Seong, Jin-Uk;Kim, Dong-Sup;Park, Jae-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.178-186
    • /
    • 2011
  • This study was conducted to investigate runoff characteristics of non-point pollutant sources in an agricultural area watershed in Boeun area, Chungbuk Province. The monitoring site represented 1.56 $km^2$, about 44.4% of which was covered with paddy fields. The monitoring was conducted for six events in a period of 5 month. Event Mean Concentration (EMC) and Site Mean Concentration (SMC) of suspended solids (SS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), total nitrogen (T-N) and total phosphorus (T-P) were calculated using the results of the water quality parameters. A comparison between arithmetic mean concentration and EMC revealed that nearly all EMCs were higher than the corresponding arithmetic mean concentrations. First-flushing effects were exhibited for SS, BOD, and T-P, with relatively high concentrations in early-stage storm events.

ALL-SKY OBSERVATION OF THE 2001 LEONID METEOR STORM: 1. METEOR MAGNITUDE DISTRIBUTION (전천 카메라를 이용한 2001 사자자리 유성우 관측: 1. 유성 등급 분포)

  • 김정한;정종균;김용하;원영인;천무영;임홍서
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.283-298
    • /
    • 2003
  • The 2001 Leonid meteor storm has been observed all over the world, and its most intense flux since the last few decades has caused great interest among both laymen and experts. Especially, its maximum hours occurred at dawn hours of Nov. 19 in the east Asia, during which moonless clear night at the Mt. Bohyun allowed us near perfect condition of observation. Observation was carried out in the period of 01:00∼05:40(KST), which include the predicted maximum hours, with all-sky camera installed for upper atmospheric airglow research. Tn this paper we analyze 68 all-sky images obtained in this period, which contain records of 172 meteors. Utilizing the zenith hourly rate(ZHR) of 3000 and magnitude distribution index of 2, which were reported to International Meteor Organization by visible observers in the east Asia, we estimate the limiting magnitude of about 3 for meteors detected in our all-sky images. We then derive magnitudes of 83 meteors with clear pixel brightness outlines among the initially detected 172 meteors by comparing with neighbor standard stars. Angular velocities of meteors needed for computing their passing times over an all-sky image are expressed with a simple formula of an angle between a meteor head and the Leonid radiant point. The derived magnitudes of 83 meteors are in the range of -6∼-1 magnitude, and its distribution shows a maximum new -3mag. The derived magnitudes are much smaller than the limiting magnitude inferred from the comparison with the result of naked-eye observations. The difference may be due to the characteristic difference between nearly instantaneuous naked-eye observations and CCD observations with a long exposure. We redetermine magnitudes of the meteors by adjusting a meteor lasting time to be consistent with the naked-eye observations. The relative distribution of the redetermined magnitudes, which has a maximum at 0 mag., resembles that of the magnitudes determined with the in-principle method. The relative distribution is quite different from ones that decrease monotonically with decreasing magnitudes for meteors(1∼6) sensitive to naked-eye observations. We conclude from the magnitude distribution of our all-sky observation that meteors brighter than about 0 mag., appeared more frequently during the 2001 Leonid maximum hours. The frequent appearance of bright meteors has significantly important implication for meteor research. We noted, however, considerably large uncertainties in magnitudes determined only by comparing standard stars due to the unknown lasting time of meteors and the non-linear sensitivity of all-sky camera.

Assessment of Flood Flow Conveyance for Urban Stream Using XP-SWMM (XP-SWMM을 이용한 도시하천에서의 홍수소통능력 평가)

  • Hong, Jun-Bum;Kim, Byung-Sik;Seoh, Byung-Ha;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.139-150
    • /
    • 2006
  • In recent, increasing of the impervious area gives rise to short concentration time and high peak discharge comparing with natural watershed and it is a cause of urban flood damage. Therefore, we have performed for structural and non-structural plans to reduce the damage from inundation. The Gulpo-cheon basin had been frequently inundated and damaged due to the water level of Han river. So, the Gulpo-cheon floodway was constructed with 20 meters width for flood control in the basin but it was not enough for our expectation and now we have a plan to expand the floodway to 80 meters. We use a XP-SWMM model developed based on EPA-SWMM version for analyzing the capacity of flood conveyance by the expansion of Gulpo-cheon floodway with the same 100 years return period design storm and the same tidal conditions of the Yellow sea. The flood conveyance after the expansion of floodway becomes three times comparing it with before the expansion. Also we simulate the flood discharge at the diversion point of Gulpo-cheon for the expanded condition of floodway and know that the discharge of about 300 m3/sec is flowing backward to the expanded floodway. Therefore we may need some kinds of hydraulic structures to prevent the back water.