• 제목/요약/키워드: Non-rigid model

검색결과 160건 처리시간 0.031초

조명 영상 합성을 통한 AAM 피팅 성능 개선 (Fitting Enhancement of AAM Using Synthesized Illumination Images)

  • 이형수;김대진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.409-414
    • /
    • 2007
  • Active Appearance Model is a well-known model that can represent a non-rigid object effectively. However, since it uses the fixed appearance model, the fitting results are often unsatisfactory when the imaging condition of the target image is different from that of training images. To alleviate this problem, incremental AAM was proposed which updates its appearance bases in an on-line manner. However, it cannot deal with the sudden changes of illumination. To overcome this, we propose a novel scheme to update the appearance bases. When a new person appears in the input image, we synthesize illuminated images of that person and update the appearance bases of AAM using it. Since we update the appearance bases using synthesized illuminated images in advance, the AAM can fit their model to a target image well when the illumination changes drastically. The experimental results show that our proposed algorithm improves the fitting performance over both the incremental AAM and the original AAM.

  • PDF

저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압 (Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base)

  • 백규호
    • 한국지반공학회논문집
    • /
    • 제20권8호
    • /
    • pp.193-203
    • /
    • 2004
  • 표면이 거친 강성옹벽의 경우 뒷채움재에서 발생하는 아칭효과로 인해 옹벽에는 비선형의 토압분포가 작용하며, 아칭효과가 비선형의 토압분포에 미치는 영향은 옹벽의 변위 형태에 따라 달라진다. 따라서 강성옹벽에 작용하는 주동토압의 크기와 비선형의 토압분포를 정확하게 산정하기 위해서는 옹벽의 변위형태에 따라 달라지는 뒷채움재에 서 발생하는 실제적 인 파괴면 형상과 아칭효과를 고려해야만 한다. 따라서 본 연구에서는 강성옹벽이 저점을 중심으로 회전하는 경우에 뒷채움재에서의 아칭효과와 비선형의 파괴면 형상을 고려함으로써 비선형의 주동토압을 산정할 수 있는 토압산정식을 제안하였다. 이 과정에서 토압산정식이 수학적으로 복잡해지는 것을 피하기 위하여 뒷채움재에서 발생하는 비선형의 파괴면 형상은 4개의 직선으로 구성되는 가상의 파괴면으로 대체하였다. 그리고 제안식으로부터 구한 예측치를 기존의 모형시험 결과와 비교한 결과 제안식은 만족스런 토압 예측치를 제공하는 것으로 나타났다.

HF와 DF 혼합계내에서의 상호간 진동-진동 에너지 이동 (Vibration-to-Vibration Energy Transfer Between HF and DF in the Mixture)

  • 이창순;김유항
    • 대한화학회지
    • /
    • 제28권1호
    • /
    • pp.26-33
    • /
    • 1984
  • HF와 DF 혼합계내에서 일어나는 다음 두 진동-진동 에너지 이동 반응의 속도상수$(k_{vv})$를 n=2~5에 대해 300~800K 온도 범위에서 이론적으로 계산하였다. HF(v=n) + DF(v=0) ${\to}$ HF(v=n-l) + DF(v=l) + ${\Delta}E$(a) DF(v=n) + HF(v=0) ${\to}$ DF(v=n-l) + HF(v=l) + ${\Delta}E$(b) 이용한 충돌모형은 수소결합에너지를 분자간 상호작용의 주축으로 삼는 loosely-held, non-rigid dimer model이었고, 계산법으로는 반고전적 방법을 사용하였다. 계산 결과 반응(a)에 대한 속도상수가 반응(b)에 대한 속도상수 보다 훨씬 HF-DF 혼합계 내에서는 진동에너지가 HF에서 DF로 이동함이, 또한 반응(a)에 대한 속도 상수는 온도가 높아질 수록 감소하고, 진동 양자수가 커질 수록 증가하는 반면에, 반응 (b)에 대한 속도 상수는 온도 의존성과 양자수 의존성에 있어서 대체로 이와 반대의 경향을 보임을 밝혔으며, 이 계산 결과는 주로 에너지 차 ${\Delta}E$의 부호와 크기로써 설명될 수 있음을 보였다.

  • PDF

Equivalent frame model and shell element for modeling of in-plane behavior of Unreinforced Brick Masonry buildings

  • Kheirollahi, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.213-229
    • /
    • 2013
  • Although performance based assessment procedures are mainly developed for reinforced concrete and steel buildings, URM (Unreinforced Masonry) buildings occupy significant portion of buildings in earthquake prone areas of the world as well as in IRAN. Variability of material properties, non-engineered nature of the construction and difficulties in structural analysis of masonry walls make analysis of URM buildings challenging. Despite sophisticated finite element models satisfy the modeling requirements, extensive experimental data for definition of material behavior and high computational resources are needed. Recently, nonlinear equivalent frame models which are developed assigning lumped plastic hinges to isotropic and homogenous equivalent frame elements are used for nonlinear modeling of URM buildings. The equivalent frame models are not novel for the analysis of masonry structures, but the actual potentialities have not yet been completely studied, particularly for non-linear applications. In the present paper an effective tool for the non-linear static analysis of 2D masonry walls is presented. The work presented in this study is about performance assessment of unreinforced brick masonry buildings through nonlinear equivalent frame modeling technique. Reliability of the proposed models is tested with a reversed cyclic experiment conducted on a full scale, two-story URM building at the University of Pavia. The pushover curves were found to provide good agreement with the experimental backbone curves. Furthermore, the results of analysis show that EFM (Equivalent Frame Model) with Dolce RO (rigid offset zone) and shell element have good agreement with finite element software and experimental results.

비전도 반평판 사이에서 미끄럼 운동하는 평판 층의 열탄성 불안정성 (Thermoelastic Instability of the Layer Sliding between Two Non-conducting Half-planes)

  • 하태원;조용구;김흥섭;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.483-488
    • /
    • 2003
  • Frictional heating in brakes causes thermoelastic distortion of the contacting bodies and hence affects the contact pressure distribution. The resulting thermo-mechanical coupling can cause thermoelastic instability (TEI) if the sliding speed is sufficiently high, leading to non-uniform heating called hot spots and low frequency vibration known as hot judder. The vibration of brakes to the known phenomenon of frictionally-excited thermoelastic instability is estimated studying the interface temperature and pressure evolution with time. A simple model has been considered where a layer with half-thickness ${\alpha}$ slides with speed V between two half-planes which are rigid and non-conducting. The advantage of this properly simple model permits us to deduce analytically the critical conditions for the onset of instability, which is the relation between the critical speed and the growth rate of the interface temperature and pressure. Symmetrical component of pressure and temperature distribution at the layer interfaces can be more unstable than antisymmetrical component. As the thickness ${\alpha}$ reduces, the system becomes more apt to thermoelastic instability. Moreover, the evolution of the system beyond the critical conditions has shown that even if low frequency perturbations are associated with low critical speed, it might be less critical than high frequency perturbations if the working sliding speed is much larger than the actual critical speed of the system.

  • PDF

유연도 영향계수법을 이용한 접촉 결합 부의 모델링 (Finite Element Modeling of Contact Joints by Flexibility Influence Coefficient)

  • 조성욱;오제택
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.128-135
    • /
    • 2006
  • Rational dynamic modeling and analysis method f3r complex structures are studied with special attention to slide way joints. For modeling of slide way joints, a general modeling technique is used by using the influence coefficients method which is applied to the conversion of detailed finite element model to the equivalent reduced joint model. The theoretical part of this method is illustrated and the method is applied to the structure with slide way joint. In this method, the non-linearity of the contact surfaces is considered within a proper range and the boundary effect of the joint model could be eliminated. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam and slide way joints of the vertical type lathe. The method can also be used to other kinds of joint modeling. The results of these analysis were compared with those of Yoshimura models and rigid joint models, which demonstrated the practical applicability of the proposed method.

Analysis and control of the falling cat phenomenon

  • Nakagawa, Takayuki;Sampei, Mitsuji;Kiyota, Hiromitsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.472-475
    • /
    • 1995
  • In this paper, we investigate so-called the falling cat problem. It is well known that a cat, when released from an upside down configuration starting from rest, is able to land on her feet without violating angular momentum conservation. This has being an interesting problem for engineers for a long time. We consider a model of a falling cat as connected two rigid columns, which is a nonholonomic system. We design the controller for it, using time- state control form of the model and exact linearization technique. Finally, we test the controller thorough simulation on the model of a falling cat.

  • PDF

유연 매니퓰레이터 동역학 모델링의 비선형 커플링 요소 (Nonlinear Coupling Factor in Dynamic Model of Flexible Manipulator)

  • 이진호;임성수;이순걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.404-408
    • /
    • 2005
  • Having flexibility in a manipulator will degrade trajectory tracking control and manipulator tip positioning. In practice, however, constraints imposed by various operating requirements, will render the presence of such flexibility unavoidable. The dynamic analysis of the flexible manipulator is essential in designing proper control systems. A flexible manipulator consists of infinite number of elastic modes and the modes are usually coupled to each other. For the practicality, however, it is usually assumed that the flexible system consists of finite number of elastic modes and the modes are decoupled. These assumptions result in a linear and decoupled mathematical model of the flexible manipulator and simplify the analysis of the dynamic behavior and the design of the control system. The decoupling and linearization of the flexible link, however, has been assumed without in depth analysis. This paper focuses on the analysis of the significance of the non-linear coupling factors.

  • PDF

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.35-43
    • /
    • 2008
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

이동하는 물체 주위의 압축성 유동에 대한 가상경계법 (IMMERSED BOUNDARY METHOD FOR COMPRESSIBLE VISCOUS FLOW AROUND MOVING BODIES)

  • 조용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.200-208
    • /
    • 2007
  • A methodology for the simulation of compressible high Reynolds number flow over rigid and moving bodies on a structured Cartesian grid is described in this paper. The approach is based on a modified version of the Brinkman Penalization method. To avoid oscillations in the vicinity of the body and to simulate shcok-containing flows, a Weighted Essentially Non-Oscillatory scheme is used to discretize the spatial flux derivatives. For high Reynolds number viscous flow, two turbulence models of the two-equation Menter's SST URANS model and a two-equation Detached Eddy Simulation are implemented. Some simple flow examples are given to assess the accuracy of the technique. Finally, a moving grid capability is demonstrated.

  • PDF